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Metabolic dysfunction-associated steatotic liver disease (MASLD) has 
become a public health problem, given its increasing incidence world-
wide and strong association with metabolic syndrome components such 
as obesity, insulin resistance, and systemic inflammation. Recent studies 
have shown the relevance of microRNAs (miRNAs) as potential bio-
markers and therapeutic targets in MASLD. This bibliometric review 
aimed to evaluate the scientific production of the last decade on miRNAs 
involved in the pathophysiology and diagnosis of MASLD. A total of 
775 articles were initially retrieved from the PubMed database, with 51 
meeting the inclusion criteria after a systematic screening process. Bib-
liometric analysis showed that China and the United States had the high-
est number of publications, with studies published mainly by the Inter-
national Journal of Molecular Sciences and Hepatology. Among the most 
studied miRNAs were miR-122, miR-29a, miR-34a, and miR-223, which 
participate in lipid metabolism, inflammation, fibrosis, and insulin sen-
sitivity. Co-authorship network analysis identified Gao Bin as the most 
influential author in the field. Keyword co-occurrence analysis showed 
growing interest in miRNAs in general, miR-29a, miR-34a, miR-122, 
miR-223, nonalcoholic fatty liver disease, lipogenesis, and mitochondrial 
stress in recent years. This review emphasizes the increasing scientific 
attention on miRNAs involved in MASLD and highlights their diagnostic 
and therapeutic potential. However, further studies are still needed for the 
identification and clinical validation of therapeutic targets that modulate 
miRNAs. Future perspectives include the integration of omics approach-
es and the exploration of nutritional or pharmacological strategies for 
miRNA modulation.

Keywords: Biomarkers; inflammation; microRNA; miR-122; miR-29a; 
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Introduction
Metabolic dysfunction-associated steatotic liver disease (MASLD) has 
become a relevant public health problem with increasing incidence 
worldwide.[1] Epidemiological studies indicate a prevalence of approx-
imately 38% in the adult population and of 7% to 14% among children 
and adolescents (Elsaid et al., 2022).[2] MASLD is more prevalent in 
Latin America (~44%) than in Western Europe (~25%), likely due to 
differences in lifestyle and dietary patterns.[3,4]

Recent epidemiological studies suggest that MASLD prevalence will in-
crease significantly by 2040, reaching approximately 55% of the world 
population.[3] This growth is predicted to be particularly high among in-
dividuals belonging to risk groups, including obese patients, those with 
type 2 diabetes (T2DM), and individuals with insulin resistance. The 
association of insulin resistance, T2DM, obesity, and dyslipidemia in 
patients with metabolic syndrome and MASLD suggests a strong link 
between these two conditions, pointing to shared underlying causes.[5,6]

MASLD progression can culminate in more severe conditions, such as 
nonalcoholic steatohepatitis, liver fibrosis, cirrhosis, and hepatocellu-
lar carcinoma. A lipid accumulation of less than 5% of the hepatocyte 
volume is considered physiological, whereas values above this thresh-
old are indicative of MASLD.[7] Clinical studies indicate that between 
12% and 40% of individuals with MASLD progress to nonalcoholic 
steatohepatitis. Of these, approximately 15% to 25% progress to liver 
cirrhosis, and approximately 7% of patients with cirrhosis progress to 
hepatocellular carcinoma.[8] These data underscore the importance of 
early diagnosis and continuous monitoring of MASLD, especially in 
at-risk populations, to prevent serious complications.[9] In addition to 
hepatic complications, MASLD is associated with several extrahepatic 
manifestations, suggesting the presence of systemic pathogenic mech-
anisms. These complications include chronic kidney disease, extrahe-
patic neoplasms, and cardiovascular diseases, which contribute signifi-
cantly to morbidity and mortality in this population.[10,11]

Early diagnosis of MASLD is essential for the implementation of pre-
vention and therapeutic intervention strategies. However, diagnosis is 
often difficult in the early stages of the disease, as conventional hepatic 
serological markers, such as alanine aminotransferase (ALT) and aspar-
tate transaminase (AST), may be within reference values. Liver biop-
sy remains the diagnostic gold standard but is an invasive method.[9,12] 
Given these limitations, recent research has focused on identifying new 
diagnostic and prognostic biomarkers for MASLD. Among the most 
promising are microRNAs (miRNAs), small non-coding RNA regulato-
ry molecules that have been investigated for their potential value in early 
detection, risk stratification, and monitoring of disease progression.[13,14]
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miRNAs exhibit numerous advantages as biomarkers and therapeutic 
targets, such as high stability, detectability in body fluids, and central 
regulatory roles in MASLD-associated metabolic, inflammatory, and 
fibrogenic processes. Recent studies indicated that some miRNAs, such 
as miR-122, miR-34a, and miR-29a, are highly expressed in individuals 
with MASLD, actively participating in the modulation of hepatic in-
flammation, insulin resistance, dyslipidemia, and hepatic fibrosis. miR-
122 was associated with the degree of liver injury and metabolic dis-
orders, whereas miR-34a was shown to participate in the regulation of 
lipid metabolism and hepatic fibrogenesis, acting on several molecular 
targets involved in disease progression.[14–16] Another example is miR-
29a, which can regulate epigenetic mechanisms, particularly through 
interaction with DNA methyltransferases, directly modulating hepatic 
inflammatory and fibrogenic processes.[15,17] Interestingly, dietary in-
terventions and bioactive compounds have demonstrated potential in 
modulating the expression of these miRNAs, offering alternative and 
complementary approaches for MASLD treatment and prevention.[18]

In view of these considerations, this bibliometric review aimed to evalu-
ate the scientific production of the last 10 years on miRNAs involved in 
MASLD, highlighting their possible clinical and therapeutic applications. 
The guiding question of the research was: What are the trends and sci-
entific contributions on the role of miRNAs in MASLD in recent years?

Materials and Methods
This study combined a bibliometric approach and a review of the lit-
erature to understand the role of miRNAs in MASLD. First, a biblio-
metric review was conducted to identify research trends, collaboration 
networks, and the academic impact of studies addressing miRNAs in 
the context of MASLD in the last 10 years. Next, a synthesis of the 
selected studies was carried out.

Bibliometric Review
This review adopted an analytical approach and focused on articles in-
dexed by PubMed. PubMed was chosen for its broad scope, reliabili-
ty, and relevance in the biomedical field. It provides open access to a 
vast database, including MEDLINE, which compiles publications from 
peer-reviewed journals with high scientific rigor. Additionally, PubMed 
is continuously updated, guaranteeing access to the most recent and 
relevant publications in the fields of health and biological sciences, en-
hancing the robustness of this review.
The search strategy was designed based on the research question and the 
Problem–Interest–Context–Outcome (PICO) framework.[19] The Prob-
lem (P) was the lack of noninvasive diagnostic and prognostic markers in 
MASLD. The Interest (I) was the use of serum miRNAs in the diagnosis, 
prognosis, and therapeutic management of MASLD in a health Context (C). 
No specific Outcomes (O) were included in the search. The search string 
comprised descriptors connected by Boolean operators: “miRNA” OR 
“microRNA” AND “nonalcoholic fatty liver disease” OR “NAFLD” OR 
“metabolic dysfunction-associated steatotic liver disease” OR “MASLD.”
Initially, articles were selected based on titles and abstracts. Then, a 
rigorous screening was performed, excluding studies that were not orig-
inal articles, such as systematic reviews, narrative reviews, commentar-
ies, errata, and studies based exclusively on bioinformatics analyses. 
The remaining articles were analyzed for relevance and methodological 
quality, resulting in the definitive inclusion of those that met the pre-es-
tablished criteria. Preference was given to applied research (experimen-
tal laboratory studies or clinical studies).

The selected articles were analyzed to identify scientific collaboration 
networks between researchers and institutions, influential authors, 
emerging topics, publication patterns, frequent terms in titles and 
abstracts (minimum of five occurrences per term), prominent coun-
tries, and most-cited articles. These parameters were analyzed using 
VOSviewer® software version 1.6.19 (van Eck and Waltman, 2010).

Results and Discussion
Bibliometric Analysis
The literature search was conducted in the PubMed database, retrieving 
775 articles. Of these, 261 records were removed for not being freely 
available in full text, and 514 articles were retained. After an initial 
screening, 196 articles were excluded because they were reviews, sys-
tematic reviews, commentaries, errata, retractions, or bioinformatics 
analyses. Of the remaining articles subjected to an in-depth screening, 
51 met the eligibility criteria and were included in this review (Fig. 
1). This process enabled the selection of relevant and methodological-
ly appropriate studies to support the critical analysis of the findings, 
strengthening the conclusions on the topic. Appendix 1 summarizes the 
articles included in the review.
The synthesis of articles presented in Appendix 1 explores the role of 
miRNAs in the regulation of lipid metabolism, inflammation, liver fi-
brosis, and insulin resistance, particularly in the context of MASLD/
NASH and associated conditions. Among the most studied miRNAs, 
miR-122, miR-29a, miR-34a, and miR-223 deserve mention for their 
therapeutic and diagnostic potential.
miR-122 is described as a key regulator of hepatic lipid metabolism, 
fibrosis, and inflammation. Several studies have shown that elevated 
serum levels of miR-122 positively correlate with the severity of hepat-
ic steatosis, lobular inflammation, and fibrosis. As such, this miRNA is 
more sensitive than traditional liver enzymes, such as ALT and AST, in 
the noninvasive diagnosis of the disease. Modulation of miR-122, espe-

Figure 1. Flowchart detailing the steps in the bibliographic review.
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cially through the LKB1/AMPK pathway and interaction with SIRT1, 
emerges as a promising therapeutic strategy to reduce hepatic lipid ac-
cumulation and improve metabolic homeostasis.[20,29–31,34,37,42,45,51,52,54,61,65]

The studies addressed in this review indicated that miR-29a protects 
against hepatic steatosis and fibrosis through the regulation of inflamma-
tory and fibrogenic pathways. Its hepatic expression reduces lipid accumu-
lation and inflammation, modulating pathways such as TGF-β/SMAD3, 
PI3K, and those of proteins associated with the inflammatory response 
(e.g., IL6 and MCP1). Its protective role against mitochondrial stress is 
also highlighted, having the potential to reduce the development of fibro-
sis and hepatic inflammation induced by high-fat diets.[15,17,22,23,27,54,67]

The results demonstrated that miR-34a is related to the worsening of 
MASLD, intensifying steatosis, inflammation, and hepatocyte apop-
tosis. Its elevated expression distinguishes MASLD from other liver 
diseases, presenting a superior diagnostic performance to conventional 
markers (CK-18, ALT, and indices such as FIB-4 and APRI). Therapeu-
tic modulation of miR-34a could therefore represent a promising ap-
proach to controlling the progression of MASLD and its complications, 
including insulin resistance and associated cardiovascular disease.[58–60]

miR-223 demonstrates significant anti-inflammatory and antifibrotic 
effects, often associated with intercellular communication via extracel-
lular vesicles. Selective transfer of miR-223 from neutrophils to he-
patocytes reduces inflammation and fibrosis. It is suggested as a rele-
vant therapeutic target to halt the progression of MASLD to NASH and 
hepatocellular carcinoma.[35,41,43,49]

Some studies evaluated nutritional and pharmacological interventions 
for miRNA modulation. The Mediterranean diet and supplementation 

with δ-tocotrienol and resveratrol were shown to be capable of reduc-
ing the expression of inflammatory miRNAs, improving the metabolic 
profile in patients with metabolic syndrome. Furthermore, regular phys-
ical activity reduced pro-inflammatory miRNAs such as miR-146a-5p, 
highlighting the preventive potential of these approaches against meta-
bolic and hepatic complications.[18,58]

Figure 2. Role of microRNAs in the regulation of metabolic dysfunction-associated steatotic liver disease (MASLD): potential biomarkers and thera-
peutic targets.

Figure 3. Temporal analysis of publications on microRNAs in the context 
of metabolic dysfunction-associated steatotic liver disease.



Hepatology Forum

183

doi: 10.14744/hf.2025.17142

Hepatology Forum 2025 Vol. 6 | 180–189

Taken together, these findings reinforce the importance of miRNAs as 
central regulators of lipid metabolism, inflammation, and progression 
of liver fibrosis, as well as their viability as noninvasive biomarkers for 
the diagnosis and therapeutic monitoring of MASLD and related meta-
bolic diseases. Interventions targeting the modulation of these miRNAs 
offer promising therapeutic perspectives but require further clinical val-
idation in studies with larger populations and different metabolic con-
texts. A schematic summary of the results is shown in Figure 2.

Temporal Analysis of Publications
Temporal analysis of the publications included in this review revealed 
an increase in the number of studies from 2020 onward (Fig. 3), reflect-
ing the growing scientific interest in miRNAs in the context of MASLD. 
This increase followed the rise in the global incidence of the disease, 
reinforcing the relevance of the topic in recent years. According to data 

presented by Le et al.,[3] by 2040, more than half of the adult population 
will have MASLD, with the increases being more pronounced in wom-
en, smokers, and those without metabolic syndrome. Such projections 
are mainly associated with lifestyle changes, genetic factors, visceral 
fat deposition, and high consumption of sugar and saturated fat. These 
factors favor systemic inflammation and insulin resistance, culminating 
in several associated pathological conditions, such as MASLD and car-
diovascular diseases, hypertension, and metabolic syndrome.[4]

Most studies were conducted in China, accounting for about 30% of all 
publications, followed by the United States, with approximately 20%. 
Studies were mainly published by the International Journal of Molec-
ular Sciences (~14%) and Hepatology (~10%), reflecting the prefer-
ence for journals with a high impact factor in the areas of molecular 
biology and hepatology. The impact factor of the main journals on the 
topic ranged from 5 (International Journal of Molecular Sciences) to 14 
(Hepatology) and 20 (Journal of Hepatology).

Figure 4. (a) Bibliometric network map and (b) overlay visualization map of the main authors of scientific publications on microRNAs in the context of 
metabolic dysfunction-associated steatotic liver disease.� Cont →

a
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The predominance of publications from China may be associated with 
the growing incidence of MASLD in the country, estimated at 46 new 
cases per 1,000 inhabitants/year, according to recent data in the liter-
ature.[68–70] In the United States, the high scientific production can be 
explained by the high prevalence of risk factors for MASLD, such as 
obesity, insulin resistance, and metabolic syndrome, which affect a sig-
nificant portion of the adult population.[4]

Bibliometric analysis, performed using VOSviewer software, indicated 
that the authors with the highest citation strength were Gao Bin, with a 
link strength of 34, and Bonora Enzo, with a link strength of 18. These 
findings underscore the influence and protagonism of these authors in 
scientific production related to miRNAs in the context of MASLD.
Figure 4 shows the results of the co-authorship network analysis. Sev-
eral clusters (Fig. 4a) represented by different colors can be observed, 
indicating communities of authors who collaborate more frequently 

with each other. The author Gao Bin stands out as one of the central 
nodes of the network, exhibiting a strong degree of connection with 
other authors. This finding suggests significant collaborative action and 
a possible leadership or reference role in the subject. Other well-de-
fined groups include those led by Pan, Qin, Bonora, Enzo, Akuta, No-
rio, Koyama, and Sachiko, which reflect regional or thematic centers of 
scientific production. Figure 4b confirms the influence of Gao Bin, who 
is placed as the main central node. This high betweenness centrality 
is indicative of the author’s strategic role in connecting different sub-
groups within the network. Gao’s position suggests a strong influence 
on the production and dissemination of knowledge on the topic.
A dense cluster of highly interconnected authors was formed around 
Gao, including Seo, Wonhyo, Feng, Dechun, Hwang, Seonghwan, He, 
Yong, Hou, and Xin. This pattern suggests the existence of a well-es-
tablished collaborative core, possibly linked to the same institution 

Figure 4.
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or international research network, with consolidated and continuous 
scientific production. Furthermore, the cluster branches out into sub-
groups connected to authors such as Ren, Ruixue, Kunos, George, Ro-
drigues, Robim M., Pacher, and Pal, demonstrating interinstitutional 
and international collaboration. These subgroups, although less central, 
maintain relevant links with the core, contributing to the integration of 
knowledge and the methodological diversity of research.
The predominant green and yellow colors in the network (Fig. 4b) indi-
cate positive normalization values in contribution analysis, reinforcing 

the active role of the authors in the generation and circulation of recent 
knowledge on the topic. This configuration points to a robust and inte-
grated collaborative structure, which favors the advancement of knowl-
edge about the role of miRNAs in the pathophysiology of MASLD 
and their diagnostic and therapeutic potential. Additionally, Figure 4a 
shows a considerable number of isolated authors, that is, those with few 
connections in the network (indicated in gray), suggesting independent 
studies with little international or interdisciplinary collaboration. This 
fragmentation may indicate an opportunity for strengthening collabora-
tive networks and promoting integration between research groups.

Figure 5. (a) Bibliometric network map and (b) overlay visualization map of the main keywords in research on microRNAs in the context of metabolic 
dysfunction-associated steatotic liver disease.� Cont →

a
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The main countries of affiliation were China, the United States, and 
Japan. These findings reinforce the role of these nations as centers of 
scientific production on miRNAs and MASLD.

Keyword Analysis
Figure 5 shows the network of keyword co-occurrences extracted from 
the selected articles. This analysis aimed to identify the main themes, 
conceptual interrelations, and emerging trends in the scientific literature 
on miRNAs and MASLD. The cluster density map revealed multiple 
clusters, with the term “microRNA” appearing as a central node (Fig. 

5a). This term was connected to the keywords inflammation, fibrosis, 
obesity, insulin resistance, NAFLD, and biomarker. Thus, studies have 
been exploring the role of miRNAs in inflammatory processes, hepat-
ic fibrogenesis, and insulin resistance, which are central mechanisms 
in the pathophysiology of MASLD. The most recurrent miRNAs were 
miR-122, miR-29a, miR-34a, miR-192, miR-33a, and miR-192-5p, in-
dicating a growing interest in their application as potential biomarkers 
or therapeutic targets.
The themes nonalcoholic steatohepatitis, fibrosis, autophagy, and lipo-
genesis have been gaining prominence, suggesting a convergence of 

Figure 5.
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studies on molecular pathways that regulate both the progression and 
regression of liver damage. The presence of other key terms, such as 
clinical trial, resveratrol, and δ-tocotrienol, indicates the investigation 
of translational approaches and potential therapies.
Figure 5b shows the temporal overlay map of keywords. The most 
recent keywords appear in yellow and light green, whereas the old-
est terms are displayed in blue. Terms such as miR-29a, miR-192-5p, 
autophagy, mitochondrial unfolded protein, Kupffer cells, serum, and 
NAFLD appear prominently in the most recent publications, suggesting 
that these themes represent current frontiers of research on miRNAs in 
the context of MASLD.
This analysis allowed the identification of gaps and future opportu-
nities, particularly in the clinical validation of miRNAs as diagnostic 
tools and the study of their molecular mechanisms in cellular and ani-
mal models. New studies are needed to consolidate the use of miRNAs 
in the diagnosis, prognosis, and possibly treatment of MASLD.
Bibliometric analysis revealed a significant correlation between 
MASLD and metabolic syndrome, demonstrating the interrelation of 
MASLD with several pathological conditions, such as insulin resis-
tance, dyslipidemia, and systemic inflammation.
It is also important to highlight the need for further investigation into 
the molecular mechanisms mediated by miRNAs, especially miR-122, 
miR-29a, and miR-223, which emerged as potential therapeutic tar-
gets. miR-122 is strongly associated with the promotion of hepatic and 
systemic inflammatory processes, contributing to the progression of 
MASLD to cirrhosis and hepatocellular carcinoma. By contrast, miR-
29a and miR-223 demonstrate hepatoprotective effects, attenuating in-
flammation and hepatic fibrosis.
Deepening our understanding of the regulatory pathways modulated 
by these miRNAs is essential for elucidating the pathophysiological 
mechanisms of MASLD, which has increased in prevalence globally, 
including among children and adolescents. Furthermore, the use of 
these miRNAs as biomarkers may represent a promising strategy for 
early diagnosis. Their modulation by dietary interventions, physical 
activity, or specific drugs also emerges as a potentially effective thera-
peutic approach.
A limitation of this bibliometric review was the restricted access to the 
full texts of approximately one-third of the initially retrieved publica-
tions. This constraint may have resulted in the exclusion of relevant 
high-quality studies, potentially influencing the comprehensiveness of 
the analysis. Future reviews should consider strategies to improve ac-
cess to full-text content, such as institutional or interlibrary collabora-
tions, in order to ensure broader and more representative inclusion of 
the available literature.

Future Perspectives
This review demonstrated the relevance of miRNAs as potential bio-
markers and therapeutic targets of MASLD. Despite recent advances in 
understanding the molecular pathways modulated mainly by miR-122 
and miR-29a, important gaps remain to be explored.
Future studies should prioritize the clinical validation of these miR-
NAs in longitudinal and multicenter trials, aiming to consolidate 
their application in clinical practice for both early diagnosis and 
disease monitoring. Standardization of methods for collecting, ex-
tracting, and quantifying circulating miRNAs is essential for their 
effective use as a diagnostic tool.

Another gap in research involves investigating the therapeutic po-
tential of modulating miRNAs through nutritional interventions, bio-
active compounds, physical activity, or therapies using agomiRs or 
antagomiRs. The combination of pharmacological approaches with 
miRNA-based therapies may represent an innovative and personalized 
strategy for the management of MASLD and its complications. There-
fore, there is a need for additional in vivo and in vitro studies, as well 
as in silico analyses, to elucidate the pathways regulated by miRNAs 
in MASLD.
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Appendix 1. Summary of articles included in the review

Reference Objective Main findings

Csak et al. (2015) [20] Evaluate miR-122 regulation of HIF-1α, 
vimentin, and MAP3K3 in liver fibrosis.

- ↓ liver miR-122, ↑ HIF-1α, vimentin, and MAP3K3 expression, ↑ 
hepatic steatosis.

- ↑ serum miR-122 in hepatic steatosis associated with diet

Fu et al. (2015) [21] Investigate miR-26a in hepatic meta-
bolic regulation and insulin sensitivity.

- ↑ liver miR-26a, ↑ insulin sensitivity and ↓ metabolic complica-
tions of obesity, ↓ glucose production and lipid biosynthesis.

Galimov et al. (2015) [22] Investigate miR-29a and targets in 
GH-induced insulin resistance.

- GH therapy, ↑ IGF-1, ↓ miR-29a, ↓ insulin signaling, COLA3A1, 
and ↑ myokines, fibrosis, inflammation, and insulin resistance.

Mattis et al. (2015) [23] Evaluate how miR-29a modulates LPL 
and lipid handling in steatosis.

- ↓ miR-29, ↑ liver LPL, ↑ liver triglyceride (TG) and cholesterol, 
metabolic dysfunction-associated steatotic liver disease.

Akuta et al. (2016) [24] Analyze circulating miR-122 in relation 
to NAFLD histopathology.

- ↑ serum miR-122, ↑ steatosis progression, lobular inflammation, 
and fibrosis progression.

Marques-Rocha et al. (2016) 
[25]

Evaluate how a Mediterranean diet 
modulates inflammatory miRNAs in 
metabolic syndrome.

- Mediterranean diet consumption improved miR-155 and Let-7b 
expression. ↑ Let-7b, ↓ reactive oxygen species (ROS) production.

Salvoza et al. (2016) [26] Explore associations of key serum 
miRNAs with dyslipidemia in NAFLD.

- Patients with NAFLD had ↑ expression of miR-34a and miR-122 
compared to healthy patients. ↑ miR-34a and miR-122, ↑ degree of 
steatosis, fibrosis, and inflammation. Serum miR-122 was higher than 
ALT values in patients with NAFLD.

Zhou et al. (2016) [27] Investigate miR-29a and insulin resis-
tance in IUGR-exposed muscle cells.

- ↑ miR-29a induced insulin resistance in C2C12 cells. ↑ miR-29a, 
↓ GLUT-4 and PPARα.

Liu et al. (2016) [28] Evaluate circulating miRNAs for NASH 
diagnosis and differentiation from CHB.

- miR-122, -16, -192, and -34a showed significant differential expres-
sion between NAFLD and CHB patients. miR-34a was significantly 
increased in NAFLD compared to CHB.

- The levels of miR-122, miR-192, and especially miR-34a correlated 
positively with hepatic steatosis and inflammatory activity (lobular 
inflammation and hepatocyte ballooning). Only miR-16 showed signif-
icant correlation with hepatic fibrosis.

- miR-34a showed superior diagnostic performance to the other mark-
ers (CK-18, ALT, FIB-4, and APRI) in identifying patients with NASH, 
reaching high specificity (0.875) and moderate sensitivity (0.704).

Wu et al. (2017) [29] Investigate miR-122 in lipid accumula-
tion and droplet regulation.

- ↑ miR-122, ↓ accumulation of lipids in hepatocytes, YY1-FXP-SHP 
axis modulation.

Willeit et al. (2017) [30] Explore miR-122 as a biomarker for 
MetS and T2DM risk.

- ↑ miR-122, ↑ ALT, AST, adiposity, inflammation, insulin resistance, 
triglycerides and ↓ HDL-C.

Wang and Yu (2018) [31] Explore the link between miR-122 and 
coronary atherosclerosis severity.

- ↑ circulating levels of miR-122, ↑ stage of coronary atherosclerotic 
lesion and ↑ cholesterol and TG.

Russo et al. (2018) [32] Explore changes in miR-126 and 
miR-146a-5p after physical activity in 
obesity.

- Obesity is directly correlated with ↑ miR-146a-5p, ↑ miR-146a-5p, 
↑ total cholesterol and TG, ↓ HDL-C. In U937 cells, ↑ miR-146a-5p 
→ ↑ TLR4, NFκB, IL6, and TNFα.

Yang et al. (2019) [15] Evaluate miR-29a in reducing hepatic 
inflammation and fibrosis in dietary 
NASH.

- ↑ miR-29a, ↓ hepatic lipid accumulation, as evidenced by ↓ AST 
and ROS. The mechanism associated with these effects is a de-
crease in the expression of SMAD3, p-PI3K, LC3B II, TGF, and IL6.

Ando et al. (2019) [33] Evaluate the association of miR-20a, 
27a, and 126 with NAFLD.

- Serum levels of miR-20a and miR-27a were significantly reduced in 
NAFLD patients compared with normal individuals. miR-126 showed 
no significant difference overall but was reduced in more severe 
cases in men.

- There was a significant association between reduced levels of 
miR-20a and miR-27a and NAFLD severity, even after adjustment for 
multiple risk factors, such as age, sex, and metabolic indicators.

- miR-126 showed a weak inverse correlation with liver fibrosis index 
(FIB-4) but no clear correlation with disease severity.

Long et al. (2019) [34] Evaluate miR-122 regulation of LKB1/
AMPK and Sirt1 in NAFLD lipogenesis.

- In vivo model of NAFLD ↑ miR-122, ↓ SIRT1

- In vitro model of NAFLD (HepG2 and Huh7), ↓ miR-122 promoted 
↑ SIRT1 via LKB1/AMPK signaling.
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Appendix 1 (cont). Summary of articles included in the review

Reference Objective Main findings

He et al. (2019) [35] Evaluate miR-223 regulation of in-
flammation and oncogenes in NASH 
and HCC.

- ↑ liver and serum miR-223 after 3 months of a high-fat diet to prevent the 
progression from simple steatosis to NASH and liver cancer.

- ↓ miR-223, ↑ proliferation and HCC markers (Ki67, CxCl10, TAZ, Gpc3, 
Golm1), inflammatory genes (IL6), and fibrinogenic genes (COL1A1).

- miR-223-knockout mice fed a high-fat diet developed liver tumors.

Lin et al. (2019) [36] Evaluate miR-29a in HFD-induced 
steatohepatitis and liver fibrosis.

- ↑ miR-29a, ↓ fat accumulation and liver mass induced by a high-fat diet 
and improved hepatocellular steatosis and liver fibrosis, ↓ inflammation 
hepatic. 

- ↑ miR-29a, ↓ PPAR, TFAM, MCP1, IL6, alleviation of oxidative damage 
and obesity reduction.

Chai et al. (2020) [37] Evaluate how a RORA agonist mod-
ulates miR-122 and NASH severity.

- Administration of RS-2982, which binds and activates the RORA transcrip-
tion factor in the liver,

- ↑ miR-122 in the liver and blood,

- ↓ TG in the liver and muscle tissues, ↓ inflammation and fibrosis in the liver

- ↑ whole-body energy expenditure, fat oxidation, and insulin sensitivity, 
and ↓ weight and inflammation in adipose tissue.

Huang et al. (2020) [38] Evaluate miR-18a-5p and miR-22-3p 
as stress and MetS biomarkers.

- Patients with metabolic syndrome,

- ↓ miR-18a-5p and miR-22-3p,

- ↑ cortisol and IL-6. 

- ↓ miR-18a-5p and miR-22-3p,

- ↑ risk of developing metabolic syndrome.

Liu et al. (2020) [39] Evaluate hepatic exosomal miR-192-
5p in NAFLD-related macrophage 
activation.

- Both NAFLD and NASH patients ↑ miR-192-5p

- ↑ serum ALT and AST, liver iNOS, IL6, and TNF-α. 

- ↑ miR-192-5p

- ↓ pFox01 but not ↓ GSK3β.

Yang et al. (2020)[ 17] Evaluate miR-29a in regulating 
mitochondrial stress in diet-induced 
NASH

- ↑ miR-29a

- ↓ GSK3, SIRT1, mitochondrial proteostasis stress in NASH and reducing 
liver fat, fibrosis progression, and inflammation.

Bala et al. (2021) [40] Evaluate miR-155 in regulating ste-
atohepatitis and liver fibrosis in mice.

- High-fat diet increases miR-155

- ↑ TG, Cpt1α, FABA4, FAS, ACC2, TNFα, MCP1, and vimentin, resulting in 
progression of fibrogenesis and worsening of NASH.

He et al. (2021) [41] Investigate neutrophil-derived EV 
transfer of miR-223 and effects in 
NASH.

- miR-223 transfer via LDLR/APOE-dependent EVs decreased hepatic 
inflammation and fibrosis in NASH.

Hegazy et al. (2021) [42] Evaluate serum levels of miR-122 as 
a noninvasive marker to determine 
the severity of MAFLD.

- Serum miR-122 increased significantly with the severity of hepatic steato-
sis and fibrosis, correlating with ↑ lipid profile and ↑ ALT, AST, and GGT.

Hou et al. (2021) [43] Evaluate myeloid IL-6-driven miR-
223 exosomes and their role in 
NAFLD fibrosis.

- IL6 stimulation in myeloid cells activates macrophages to release miR-
223-enriched exosomes that migrate to hepatocytes and inhibit genes such 
as TAZ and Cxcl10, attenuating the progression of liver fibrosis.

Lischka et al. (2021) [44] Evaluate miRNAs associated with 
inflammation in obese and metaboli-
cally affected children.

- ↑ TNFα, IL-1Ra, and procalcitonin, correlated with ↑ miRNA-122 and 
-192

- ↑ miRNA-122, ↑ HOMA-IR.

Refeat et al. (2021) [45] Evaluate correlation of miR-33a/miR-
122 with lipid metabolism in MetS.

- Obese and diabetic patients showed increased serum levels of miR-122 
and reduced levels of miR-33a

- ↑ body mass index, Wc, Wt, total cholesterol, and TG.

Xu et al. (2021) [46] Evaluate the role of hepatocyte miR-
34a in the progression of NAFLD to 
NASH.

- Overexpression of miR-34a exacerbated NAFLD, whereas its deletion 
attenuated inflammation, apoptosis, and steatosis.

Yu et al. (2021) [47] Evaluate the effect of miR-137-3p 
on NAFLD through activation of the 
AMPKα pathway.

- miR-137-3p significantly improved NAFLD through direct activation of the 
AMPKα pathway, reducing oxidative stress and hepatic inflammation.
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Appendix 1 (cont). Summary of articles included in the review

Reference Objective Main findings

Zeinali et al. (2021) [48] Evaluate miR-122, 126-3p, and 146a 
as inflammatory markers in predia-
betes and T2DM.

- ↑ miR-122, pre-diabetic and T2DM

- ↓ miR-126-3p → pre-diabetic and T2DM

- ↓ miR-146a → pre-diabetic and T2DM

- miR-122 potential target → interleukin 1 receptor type 1, NFкB, PRKAB1

- miR-126-3p → insulin receptor substrate 1, SPRED1, TRAF6, IL6

- miR-146a → TNFα, IL6

- ↑ miR-122 → ↑ HOMA-IR

- ↑ miR-126-3p and miR-146a → ↓ HOMA-IR.

Zhang et al. (2021) [16] Explore PPARγ-driven regulation of 
hepatic stress in NASH via miR-21-
5p/SFRP5.

- PPARγ, ↓ miR‑21‑5p/SFRP5 pathway, ↓ oxidative stress and inflamma-
tion in NASH.

Ariyachet et al. (2022) [49] Investigate miR-223’s role in hepatic 
stellate activation and antifibrotic 
potential in organoids.

- ↑ miR-223, ↓ COL1A1, COL3A1, LOXL2, and ACTA2

- miR-223 suppressed hepatic stellate cell activation and reduced fibrosis.

Elghoroury et al. (2022) [50] Explore exosomal expression of 
miR-18a/222 as diagnostic markers 
in liver disease.

- ↑ miR-18a and ↑ miR-222

↑ ALT, AST, bilirubin, AFP, urea, and creatinine levels.

Hu et al. (2022) [51] Assess the role of miR-122-5p in the 
development of NAFLD.

- ↑ miR-122-5p → correlated with the pathogenesis of NAFLD

- ↓ miR-122-5p → ↑ SOD, GSH-Px, and ↓ MDA

- ↓ miR-122-5p → ↓ total cholesterol, TG, liver weight, body weight, IL6, 
TNFα, and IL-8.

- ↓ miR-122-5p → ↑ FOXO3

Inomata et al. (2022) [52] Evaluate miR-122-5p’s role in 
PKM2-mediated glycolysis in NASH 
Kupffer cells.

- ↓ miR-122-5p activated PKM2-mediated glycolysis in Kupffer cells, con-
tributing to inflammation and worsening of NASH. miR-122-5p and PKM2 
are promising therapeutic targets for controlling hepatic inflammation and 
NASH progression.

Khorraminezhad and 
Rudkowska (2022) [53]

Evaluate miRNA modulation by dairy 
products and its association with 
glycemic profile in hyperinsulinemia.

- High dairy intake modified the expression of miRNAs (miR-106-5p and 
miR-122-5p), affecting glycemic profile and insulin resistance.

Lin et al. (2022) [54] Identify hepatic miRNA expression 
patterns in different etiologies of 
acute jaundice after liver transplan-
tation.

- Acute cholangitis → ↓ miR-122, miR-301, and miR-21

- Acute rejection → ↑ miR-122 and ↓ miR-133a

- Recurrent hepatitis → ↑ miR-122, miR-301, and miR-21

- Fatty change → ↑ 133a.

Fatima et al. (2023) [18] Determine the effects of δ-tocotrienol 
and resveratrol on miRNAs in MetS 
patients.

- Supplementation increased miR-130b and miR-221 and decreased miR-
122, improving components of metabolic syndrome.

Heianza et al. (2023) [55] Evaluate miR-128-1-5p as a marker 
of insulin sensitivity and energy 
metabolism in obesity.

- ↑ miR-128-1-5p, ↑ HOMA-IR, waist circumference, and total body fat 
mass.

Liang et al. (2023) [56] Analyze miR-29a modulation in liver 
under prolonged HFD and ethanol 
exposure

- Hepatic miR-29a expression initially increased with a high-fat and 
high-ethanol diet, subsequently decreasing with advancing liver fibrosis.

Mollet et al. (2023) [57] Investigate which miR-193b-3p-relat-
ed metabolic pathway interferes with 
NAFLD/MAFLD.

- ↑ miR-193b-3p, ↓ PPARGC1A, ↑ fat droplets in the liver, ↓ expression 
of MTTP, ↑ TRIB1, and ↑ LDLR.

Pervez et al. (2023) [58] Explore miRNA expression changes 
in NAFLD with δ-tocotrienol and 
α-tocopherol therapy.

- δ-Tocotrienol and α-tocopherol significantly reduced the expression of 
miRNAs related to steatosis, inflammation, and apoptosis (miR-122, miR-
21, miR-103a-2, miR-421, miR-375, and miR-34a).

Ragab et al. (2023) [59] Evaluate the potential of miR-34a 
and miR-192 as early diagnostic 
markers of NAFLD.

- A positive correlation was observed between miR-34a and hypertension 
in patients with NAFLD and plasma lipid levels and a negative correlation 
with the hematological markers hemoglobin and leukocytes. miR-192 
showed no correlation with these markers. miR-34a was elevated in early 
stages of liver fibrosis and reduced in advanced stages, whereas miR-192 
showed a progressive increase according to fibrosis stage.
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Appendix 1 (cont). Summary of articles included in the review

Reference Objective Main findings

Wan et al. (2023) [60] Evaluate the role of liver-specific microR-
NA-34a in ductular reaction and hepatic 
fibrosis during experimental cholestasis.

- In murine models with liver-specific deletion of miR-34a, there was a 
significant reduction in ductular reaction, cellular senescence, and liv-
er fibrosis induced by bile duct ligation. The reduction in miR-34a was 
accompanied by increased expression of Sirtuin-1 (Sirt1), suggesting 
that Sirt1 regulation may mediate the protective effects observed in 
the absence of miR-34a.

Hossain et al. (2024) [61] Determine the role of miR-122 in the reg-
ulation of inflammatory and autophagic 
proteins mediated by PKM2 in NAFLD.

- Reduction of miR-122 increased PKM2 and liver inflammation and 
reduced autophagy, exacerbating NAFLD.

Ma et al. (2024) [62] Evaluate miR-192-5p regulation of lipid 
metabolism through YY1 in NAFLD.

- ↑ miR-192-5p significantly reduced liver triglyceride accumulation 
by inhibiting factor YY1.

Tobaruela-Resola et al. 
(2024) [63]

Evaluate miR-122-5p, 151a-3p, 126-5p, 
and 21-5p for MASLD prediction.

- miR-122-5p, miR-151a-3p, miR-126-5p, and miR-21-5p significant-
ly correlated with steatosis, liver stiffness, and liver fat content in 
MASLD.

Yang et al. (2024) [64] Investigate miR-29a’s role in reducing 
mitochondrial stress via MAVS in diet-in-
duced NAFLD.

- miR-29a attenuated hepatic mitochondrial stress, reducing fibrosis, 
steatosis, and inflammation through inhibition of the MAVS pathway in 
a Western diet-induced NAFLD model.

Zhang et al. (2025) [65] Analyze differential miRNA profiles in chil-
dren with NAFLD and CVD risk.

- miR-122-5p showed increased expression in patients with NAFLD, 
significantly correlating with cardiovascular risk and metabolic alter-
ations.

Michalak et al. (2025) [66] Evaluate links between miRNAs and 
blood/serological fibrosis indicators in 
NAFLD.

- ↑ miR-126-3p, ↑ miR-1-3p, and ↓ miR-197-3p, correlation with 
hematological indices.


