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Drug dose efficacy/toxicity depends on a number of factors including ge-
netic and nongenetic factors, a pre-existing disease, and coadministration of 
other substances and drugs. Cytochrome P450 (CYP) proteins play a crucial 
role in drug metabolism where they catalyse a number of Phase I oxidation 
reactions. Concurrently administered drugs and substances, besides the CYP 
genotype are crucial and can induce/inhibit the CYP activity, thus affecting 
drug biotransformation and its bioavailability, compromising with drug ef-
ficacy, or even causing toxicity due to slow metabolism. Hepatic CYP is 
particularly important as it metabolizes about ¾ of all drugs. Determining 
the metabolite/drug ratio (in vivo CYP phenotyping) can be an important 
tool that can help in drug dose optimization for the drugs metabolized by 
specific CYPs as the genotype may not always reflect the true enzyme ac-
tivity. Clinically important CYP isoforms commonly reported in drug oxi-
dation reactions and which mainly include CYP3A4/5, CYP2C19, CYP2C9 
and CYP2D6 need to be analysed for their activity in vivo, in at least the 
cases of unpredictable treatment outcomes. The activity levels of other less 
commonly reported but no less important CYPs, such as CYP2B6, one of 
the most polymorphic human CYP involved in the metabolism of artemis-
inin, bupropion, cyclophosphamide, efavirenz, ketamine and methadone, 
and reported for its high inter-individuals and within-individual variability 
may also be determined on a case-to-case basis. This review highlights the 
variations in CYP activity due to various reasons and the importance of 
in vivo phenotyping over genotype in ascertaining drug bioavailability and 
dose optimization, implicating metabolite/drug ratio determination for per-
sonalized treatment of especially chronic liver disease patients.

Keywords: CYP phenotyping; drug metabolism; personalized therapy; pre-
cision medicine.

Introduction
The efficacy or toxicity of a therapeutic dose is affected by a host of fac-
tors, which include drug absorption and its binding to plasma proteins, 
hepatic extraction ratio, portal-systemic shunting, biliary excretion, 
enterohepatic circulation, renal clearance, and genetic variations in 
proteins involved in drug metabolism, including gene polymorphisms 
and epigenetic mechanisms.[1,2] Cytochrome P450 (CYP) is a system 
of proteins/isoenzymes expressed as membrane-bound proteins, mostly 
in the endoplasmic reticulum of the liver cells. The group of proteins 
primarily catalyses oxidative reactions of Phase I metabolism and drug 
elimination reactions in humans.[3] The system is responsible for the 
biotransformation of a number of drugs and xenobiotics in humans and 
has emerged as an important determinant of the pharmacological prop-
erties of drugs and their adverse interactions and reactions.[4]

In humans, the liver is the primary organ for drug/xenobiotics metab-
olism. CYPs are the most well-known drug-metabolizing enzymes ex-
pressed in the liver.[3] Hepatic CYP (hCYP) is particularly important 
as, in their lifetimes, humans are exposed to 1–3 million foreign sub-
stances, including drugs.[5] It can biotransform most of these substanc-
es, including approximately ¾ of all drugs in clinical use.[6] An under-
standing of the qualitative and quantitative aspects of CYP metabolism 
is important for a better insight into drug metabolism and its pharma-
cokinetics in normal and disease conditions, especially in patients in 
advanced stages of liver diseases. CYP is also crucial for drug develop-
ment. The anticancer stilboestrol diphosphate and cyclophosphamide 
were designed to produce active drug moiety upon activation by the 
CYP.[7,8] This review highlights the role of in vivo CYP phenotyping 
in clinical practice, especially in situations of mismatch between the 
genotype-based prediction of an individual and the true capacity of the 
enzyme to metabolize a drug under the influence of extrinsic or nonge-
netic factors.

CYP/P450
CYP or P450 is a superfamily of heme-containing redox proteins or 
monooxygenases in humans, animals, plants, fungi, protists, and bacte-
ria.[3,9–11] Members of the CYP family catalyse the oxidative biotransfor-
mation of a range of substances, converting their lipophilic centres to 
hydrophilic centres to increase water solubility and facilitate the elim-
ination of the converted metabolite in urine or bile.[12] Poor activity of 
CYP for its substrate/drug slows down the biotransformation, causing 
an accumulation of the drug and drug toxicity. Rapid biotransformation, 
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on the other hand, may render the normal dose ineffective. In general, 
biotransformation of a drug decreases its therapeutic efficacy.[13] How-
ever, prodrugs are more active upon biotransformation.[14]

CYP isozymes, in addition to their role in Phase 1 oxidation, catalyse 
C-hydroxylation, heteroatom oxygenation, heteroatom release (deal-
kylation), epoxide formation, and a number of more complex reactions 
and contribute to the synthesis of cholesterol, steroids, prostacyclins, 
thromboxane A2, and the degradation of vitamin D.[3,15–18] In humans, 
CYP is primarily associated with the endoplasmic reticulum membrane 
but also resides in mitochondrial and plasma membranes. It may have 
specific roles such as protecting brain areas from bilirubin neurotoxicity.
[3,19–22] A CYP isoform can metabolize only one or a very limited number 
of substrates (e.g., CYP19), or may act on multiple substrates.[23] In hu-
mans, three families of CYP (CYP1, 2, and 3) are responsible for about 
75% of all Phase I drug reactions and metabolism of a huge number of 
dietary constituents and endogenous chemicals.[24] Families like CYP51 
may not be present in some species.[11] The Human Genome Project has 
listed 57 CYP-encoding genes divided among 18 families and 43 sub-
families.[25,26] An analysis of the human genome sequence identified >59 
CYP gene-like sequences that lacked regulatory sequences for RNA/
protein synthesis. In total, over 300,000 CYP sequences have been 
mined and preserved in databases, including >16,000 plant CYPs.[27] 
Well over 41,000 CYP sequences have been assigned nomenclature, 
and a majority of the remainder has been sorted by BLAST searches 
into clans, families, and subfamilies.[27] The University of Tennessee 
Health Science Centre CYP Homepage is a comprehensive resource on 
CYP nomenclature and sequence information.[26] CYP is called P450 
because it absorbs 450 nm when bound to CO. CYP families are identi-
fied by a number (e.g., CYP1) followed by a subfamily letter (e.g., CY-
P1A). An individual protein or isoform is differentiated from another 
by placing a number after the subfamily (e.g., CYP1A1). Among differ-
ent forms of CYP, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, 
CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 are involved in 
the metabolism of most drugs. CYP3A4 and CYP2D6 alone contribute 
to >50% of all CYP-related drug metabolism.[3]

Clinically Relevant P450 Proteins
Functional genomics/pharmacogenomics of P450 report the role of 
CYP1, CYP2, and CYP3 in about 78% of all hepatically-cleared drugs.
[28] CYP3A4/5 contributes to the clearance of a majority of these drugs 
(37%), followed by CYP2C9 (17%), CYP2D6 (15%), CYP2C19 (10%), 
CYP1A2 (9%), CYP2C8 (6%), and CYP2B6 (4%).[28] In humans, an es-
timated 90% of drugs involve 6 CYPs (CYP1A2, CYP2C9, CYP2C19, 
CYP2D6, CYP3A4, and CYP3A5).[29] CYP3A4/5, CYP2C9, CYP2D6, 
and CYP2C19 account for about 79% of all drug oxidation reactions in 
humans.[28] CYP3A4 and CYP2D6 are the most significant.[30] Another 
CYP, CYP2B6, is important for its role in the metabolism of anticancer 
drugs cyclophosphamide and ifosphamide. CYP2B6 is one of the most 
polymorphic CYPs in humans. It has been reported in the metabolism 
of common drugs like artemisinin, bupropion, cyclophosphamide, efa-
virenz, ketamine, and methadone.[31] CYP2B6 is induced by phenobar-
bital and cyclophosphamide, and inhibited by secobarbital.[32,33]

Variations in CYP Activity and Drug-Drug Interactions
CYP gene polymorphisms, its epigenetic regulation, and environmental 
cues, including the CYP inhibitors and inducers, can significantly alter 
an individual’s response to a drug.[18,34] Variations in CYP activity due 

to genetic variability in CYP genes arising as a result of mutation and 
alleles can significantly impact drug therapy in individuals and people 
of different ethnicities.[35,36] At the genetic level, the ability to metabo-
lize a drug is determined by the pairing of CYP alleles. An allele can 
be functional (Normal or Wild-type, predominant in a population), or 
defective (Variant, diminished or no activity). Two Wild-type general-
ly confer a ‘normal’ rate of metabolism (Extensive metabolizers, EM 
phenotype), as opposed to variants. Individuals with two variant alleles 
have little/no activity (Poor metabolizers, PM phenotype), while those 
inheriting one of each allele show intermediate activity (Intermediate 
metabolizer, IM phenotype). Gene amplification/duplication (>2 cop-
ies of Wild-type) confers a faster metabolism (Ultrarapid metabolizers, 
UM phenotype).[37,38] In short, the PM phenotype shows little or no ac-
tivity, IM demonstrates decreased activity, and UM exhibits increased 
activity relative to the normal metabolizer (NM) phenotype.[39] PM and 
UM can significantly alter a drug dose response. PM type usually suf-
fers more adverse reactions at normal dose levels, either due to gene 
deletion or due to being homozygous for functionally variant alleles.
[40] On the other hand, UM often fails to respond to a normal drug dose. 
IM, as discussed, are heterozygous for variant alleles, and a normal or 
extensive metabolizer (EM) has two functionally competent alleles.[6]

Interesting case scenarios have been reported due to genetic variations 
in CYP. In a case of fatal morphine toxicity in a breast-fed baby, an 
extra copy of Wild-type CYP2D6 in the mother on codeine reportedly 
caused a 50% increase in morphine, hence morphine toxicity in the 
breastfed baby.[41,42] CYP2D6 converts codeine to morphine. Variable 
levels of endoxifen, the active metabolite of tamoxifen, have been re-
ported in extensive, intermediate, and poor metabolizers due to varia-
tions in CYP2D6.[43] Carriers of CYP2C9*2/*3 alleles require a lower 
dose of warfarin to avoid supratherapeutic anticoagulation. Similarly, 
the CYP2D6 loss-of-function genotype is at risk of ventricular ar-
rhythmia when treated with thioridazine. Acute dystonic reactions in 
patients with homozygous CYP2D6 on metoclopramide, and even 
deaths have been reported due to CYP variants (CYP2B6—methadone 
metabolism, and CYP2D6—fluoxetine metabolism).[44,45] An estimated 
5–10% of Caucasians have a genetically determined decreased capac-
ity for CYP2D6.[46] Similarly, the efficacy of prodrugs is significantly 
altered by a CYP variant. The US FDA has listed a number of pharma-
cogenomic biomarkers of clinical importance, including 72 CYP2D6, 
25 CYP2C19, 17 CYP2C9, 3 CYP2B6, and one each of CYP1A2 and 
CYP3A5 (https://www.fda.gov/drugs/science-and-research-drugs/ta-
ble-pharmacogenomic-biomarkers-drug-labeling).
In addition to genetics (genotype/diplotype), significant differences in 
the metabolic capacities of individuals may arise from a combination 
of non-genetic extrinsic factors such as lifestyle, smoking, alcohol, and 
diet, resulting in phenoconversion.[30,47,48] Age, hormonal status, drugs, 
co-administration of drugs in combination therapy, and the presence of 
a specific clinical condition, particularly a chronic disease of the liver, 
have also been reported as determinants of CYP phenoconversion.[49] 
In a small study in a local cohort in India, 20% of the population was 
PM type for the drugs metabolized by CYP2B6.[31] Diet, drugs, and 
xenobiotics, including pesticides, are particularly important as these 
substances not only act as substrates for CYP but may also modulate 
its activity.[50,51] Imatinib (used for the treatment of leukaemia) is both a 
substrate and an inhibitor of CYP3A4.[52] Co-administration of imatinib 
with another CYP3A inhibitor, simvastatin, can markedly increase the 
plasma concentrations of CYP3A4 substrates.[53] Similarly, the concur-
rent use of tacrolimus and omeprazole (substrates for CYP2C19 and 
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CYP3A4) increases supratherapeutic toxicity risk.[18] On the other hand, 
CYP inducers result in rapid biotransformation and drug elimination, 
as reported in the case of temsirolimus (metabolized by CYP3A4). The 
dose of temsirolimus may require an increase when concurrently ad-
ministered with a CYP3A4 inducer (fosphenytoin or phenytoin). Ri-
fampin is another CYP3A inducer which decreases the availability of 
imatinib. Treatment failure in poor metabolizers on prodrugs is also a 
matter of concern.[54,55]

CYP-mediated metabolism can be highly specific for certain drugs, as 
in the case of metoprolol, which can be used as a substrate only by a 
specific CYP (CYP2D6). In other instances, drugs like warfarin can be 
metabolized by multiple isoforms (CYP1A2, CYP2D6, and CYP3A4).
[56,57] The antifungal drug terbinafine is metabolized by one isoform but 
inhibits another.[58] These heterogeneities in CYP function may lead to 
complications in therapy. In an example, an elderly stable patient on 
warfarin reported difficulty with coagulation when fluconazole was 
added to her prescription to contain recurrent vulvovaginal candidiasis.
[30] In the literature, a number of common drug-drug interactions have 
been reported, involving mostly CYP3A4, CYP2D6, and CYP2C9 (Ta-
ble 1). Comprehensive information on drug interactions involving CYP 
can be found in Drug Interactions Flockhart Table™. The table lists 
eight CYPs which metabolize 382 drugs. These include CYP3A4 (166), 
CYP2D6 (66), CYP2C19 (41), CYP2C9 (36), CYP1A2 (34), CYP2B6 
(15), CYP2C8 (12), and CYP2E1 (12) (numbers in parentheses indicate 
the number of listed drugs in that category). It is, therefore, important to 
understand CYP-mediated drug metabolism for the drugs that behave 
as CYP substrates and also modulate (inhibit/induce) its activity, for 
example, CYP3A4.[51,59–61]

Hepatic CYP and Liver Injury
CYP is present in all tissues, including the liver, lung, plasma, kidney, 
intestinal wall, and other body organs. However, the liver is the major 
organ and site for most CYP activity. CYP inhibition usually results 
in more adverse reactions at a normal dose level due to slower drug 
biotransformation and, therefore, increased drug accumulation and tox-
icity, inflicting damage to the liver. The condition worsens in chron-
ic liver disease patients. Hepatic injury has further been reported to 
selectively modulate CYP activity.[84] In the case of compounds with 
little or no pharmacological activity (prodrugs), P450 may convert an 
inactive compound (prodrug) into a pharmacologically-active metabo-
lite (drug). In other instances, CYP-mediated activation of substances 
like acetaminophen and halothane is a common cause of drug-induced 

liver injury (DILI). Aflatoxin biotransformation is also mediated by 
the CYP.[85] Aflatoxins have been reported to cause a 30-fold increase 
in cancer risk in hepatitis B-positive persons. Hepatotoxic chemicals 
like thioacetamide affect CYP activity directly, independently of the 
cirrhosis induced by thioacetamide.[86] In the liver, CYP constitutes a 
major component of the hepatic microsomal ethanol-oxidizing system 
(MEOS). CYP2E1 metabolizes ethanol, endogenous acetone, acetol, 
steroids, and PUFA, leading to an increased generation of reactive oxy-
gen species (ROS) and ROS stress—a risk factor for non-alcoholic, and 
also alcoholic, liver diseases.[87] CYP2E1 is also known to be induced 
by lipids and to mediate autophagy inhibition by ethanol. It can activate 
several pre-carcinogens, and hence has been postulated as a cofactor 
in hepatocellular carcinoma (HCC).[88] However, few reports suggest 
a suppressive role of CYP2E1 in HCC, possibly due to its ability to 
manipulate the Wnt/Dvl2/β-Catenin pathway via ROS.[89]

CYP in Liver Cirrhosis and Other Chronic Conditions
Chronic liver diseases have been reported to impair CYP function.[90,91] 
Alcoholic and viral liver diseases, cholestasis, and cirrhosis of the liver 
can significantly alter hCYP function, including up to a 50% inhibition of 
hCYP1A2 activity in cirrhotic patients.[91–93]  In another study, a 20–40% 
reduction in CYP/mg liver tissue has been reported in liver cirrhosis.[94] 
CYP1A2, CYP2C19, and CYP3A4 in particular are sensitive to liver dis-
eases.[90] Chronic hepatitis, liver cirrhosis, and HCC cause a significant 
change in CYP2C19, affecting the biotransformation of drugs metabo-
lized by CYP2C19.[84,95] Investigations on hCYP are important as liver 
disease patients, especially cirrhosis and cancer patients, receive multi-
ple medications for treatment and associated comorbidities.[96] Drugs like 
midazolam, chlorzoxazone, and debrisoquine cause a significant dimi-
nution of CYP3A4, CYP2E1, and CYP2D6 activity, respectively. Liver 
cirrhosis particularly affects the pharmacokinetics of drugs with high he-
patic extraction rates (omeprazole, metoprolol, midazolam), while drugs 
with low-to-moderate extraction rates (caffeine, efavirenz, flurbiprofen) 
are less affected. The effect of disease on CYP is CYP-specific. CYPs 
like CYP1A2, 2B6, 2C19, 2D6, and 3A decrease in chronic disease/
Child C cirrhosis, but CYP2C9 does not, precluding the empirical use of 
liver-function parameters as surrogate CYP markers.[97,98]

Immune-Mediated Hepatotoxicity
A range of antidrug and autoantibodies causing DILI are immune-me-
diated.[99] Tienilic acid or ticrynafen and isoniazid (INH) bind to CYP, 
initiating immune hepatotoxicity via anti-CYP antibodies.[100] CY-

Table 1. P450 in common drug-drug interactions

CYP Drug/Drugs Interacting substance/drugs Category

CYP3A4 Ethinylestradiol contraceptives[62] Carbamazepine, phenytoin, phenobarbital[63,64] Inducers

 Simvastatin[65] Erythromycin, clarithromycin, telithromycin[66] Inhibitors

 Prednisone[67] Diltiazem,[68,69] verapamil[70,71] Inhibitors

 Buspirone, tandospirone[72,73] Ketoconazole,[73] Grape fruit juice[74] Inhibitors

CYP2D6 Risperidone[75] Fluoxetine[76] Inhibitor

 Tramadol[77,78] Paroxetine[79] Inhibitor

CYP2C9 Warfarin[80,81] Amiodarone, desethylamiodarone[82] Inhibitors*

  Metronidazole[83] Inhibitor

*: Also inhibit CYP3A4
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P2D6 is a major autoantigen in type 2 autoimmune hepatitis.[101] In 
INH-induced hepatotoxicity, anti-INH antibodies can be detected in 
patients’ sera along with anti-CYP2E1, anti-CYP3A4, and anti-CY-
P2C9.[99] INH forms covalent adducts with CYP2E1, CYP3A4, and 
CYP2C9. However, no antibody is seen in INH-treated controls with-
out significant liver injury.

Gut Microbiota and CYP
Microbiome is a functional modifier of CYP metabolism.[102] Several 
studies in the literature indicate this relationship between gut microbio-
ta and host drug metabolism.[103–105] The metabolic activity of hCYP3A 
is reported to be altered by gut microbiota, causing a significant ac-
cumulation of the substrate/drug metabolized by it (midazolam).[106–111] 
Drugs can be directly metabolized by the gut microbiota.[112] Antibiotics 
can also lower hCYP3A and 2B.[103,113] CYP3A4 (CYP3A11 in mice) 
has been implicated in the first-pass metabolism of many antibiotics 
and chemotherapeutics (irinotecan).[111,114–116] CYP3A constitutes ap-
proximately 30% of all hCYPs and is responsible for about half of all 
hepatic and intestinal xenobiotics metabolism. Clinical conditions like 
gastrectomy can increase hCYP3A by increasing lithocholic acid-pro-
ducing enteric bacteria in mice.[107] Studies on germ-free mice show 
a significant alteration in CYP, such as CYP3A11.[117,118] Gut-associat-
ed microbiome-derived dietary polyphenol ellagic acid and its colonic 
metabolites, urolithin-A and B, can modulate CYP1A1 and 1B1, and 
CYP3A5. More similar findings suggest an important role of ‘mi-
crobe-drug’ interactions on CYP and drug metabolism.

CYP and Drug Resistance
Drugs absorbed by the small intestine often take the CYP3A4 route. 
CYP3A4 inhibitors (grapefruit juice) may act locally on the small in-
testine and inhibit enterocyte CYP3A4.[119] In Drosophila melanogaster, 
resistance against α-amanitin is attributed to CYP.[120–122] Whole-genome 
microarray of α-amanitin-resistant fly stock showed a constitutive up-
regulation of CYP.[122] Such a property needs to be studied in humans.

Phenoconversion, Therapeutic Dose Efficacy and in vivo 
Phenotyping
Mismatch between genotype-based prediction of an individual and her/
his true capacity to metabolize a drug under the influence of extrinsic 
or non-genetic factors (phenoconversion) is not an uncommon phenom-
enon.[123] Phenoconversion has been found to convert a genotypically 
EM into a PM phenotype, significantly impacting the genotype-based 
clinical presumption and influencing any potential for advancing the 
prospects of precision or personalized therapy and predictive precision 
medicine.[124] Population-based studies in phenoconverted individuals 
with a genotype-phenotype mismatch have been reported in literature, 
such as CYP2B6 and CYP2D6.[31,125] In routine clinical practice, phe-
noconversion involving CYP can be a major issue, compelling the in-
clusion of lifestyle, living environment, hormonal balance, diseases, 
and drug-drug interactions in therapeutic dose decisions and disease 
management. It is important to ensure that the right patient receives the 
right treatment at the right time, in the right dose, and via the right mode 
for better clinical outcomes.
Age and sex-linked or hormonal variations in CYP have also been 
reported in the literature as determinants of interindividual differ-
ences in drug pharmacology, pharmacokinetics, and pharmacody-

namics, particularly in the elderly population (slow metabolism), 
neonates (where several enzyme systems including the CYP sys-
tem are not fully developed), and diseased individuals.[16,126–131] In 
a typical case of CYP1A2 polymorphism, a low inducibility CY-
P1A2 genotype has been reported associated with an increased risk 
of myocardial infarction, independent of smoking status, indicat-
ing the possibility of a CYP1A2 substrate that is detoxified rather 
than activated.[132] The effect of age and hormonal status of an indi-
vidual on CYP has been extensively reviewed in the literature for 
anticholinergic drugs, which show a strong association with these 
variables.[133] General prescribing guidelines caution against the use 
of anticholinergic medications in older individuals. More recently, 
these drugs have been identified as a potential risk for developing 
dementia.[134,135] Intriguingly, women often experience increased 
drug exposure, a likely contributor to more adverse reactions in 
women than in men.[136–138] The age-related changes which may in-
crease anticholinergic drug exposure include pseudocapillarization 
of the liver sinusoidal endothelial cells and a roughly 3.5% decline 
in CYP content for each decade of life.[133] CYP2D6 and CYP2C19 
PM phenotypes are crucial in modifying anticholinergic drug expo-
sure in a significant proportion of the population, explaining higher 
plasma levels of anticholinergic drugs and an increased drug dose 
exposure at a normal dose level in poor metabolizers.[128,133,139] Sus-
ceptibility to drug-induced liver injury (DILI) also increases in old 
age.[140] However, data is scanty on the susceptibility of the older 
population to DILI due to limited participation of older individu-
als in clinical trials, warranting proper vigilance and postmarketing 
surveillance in this population.
Concomitant intake of potentially interacting substances/drugs, an 
existing chronic disease, or an environmental cue could be among 
common non-genetic modifiers of hCYP activity. Diseases general-
ly have a negative effect on drug metabolism. Advanced-stage liver 
disease patients are particularly vulnerable to the consequences of im-
paired drug metabolism due to CYP, especially CYP3A, CYP2C19, 
and CYP1A, while CYP2C9, CYP2D6, and CYP2E1 are less affect-
ed. Pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) downregulate 
many drug-metabolizing enzymes.[141] In addition, pharmacokinetics 
vary widely in children (due to ontogeny), as in old age individuals 
and individuals suffering from chronic liver disease. Studies on CYP 
phenotyping in children to assess the correlation between CYP gen-
otype and phenotype in real-life settings have shown significant dif-
ferences in actual and genotype-based predicted values, depending on 
the assessed CYP.[142] In several cases in this study, the phenotype did 
not correspond to the genotype. It is, therefore, important to determine 
the actual activity of a CYP in physiological conditions and under the 
influence of a combination of extrinsic factors, including co-adminis-
tration of drugs, diet, smoking, alcohol consumption, etc. In literature, 
significant discrepancies have been reported between genetically-pre-
dicted and actual activity levels of hCYP1A2, hCYP2B6, hCYP2C9, 
hCYP2C19, hCYP2D6, and hCYP3A4.[30,47,48] The actual activity lev-
el determination or in vivo phenotyping of CYP isoforms can be done 
by measuring the plasma concentration of the drug (metabolized by 
that CYP) and its metabolite. The metabolite/drug ratio in plasma is 
then used to calculate the actual enzyme activity in vivo, independent 
of the genotype.[47]

In literature, the in vivo phenotyping of CYP isoforms involved in the 
metabolism of anti-HIV and antitubercular drugs has been reported 
and suggested to help determine therapeutic dose levels in HIV/AIDS-
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TB coinfections.[47] In this study, the plasma metabolite/drug ratio of 
three drugs, bupropion, losartan, and dapsone, metabolized by CY-
P2B6, CYP2C9, and NAT2, respectively, was determined in human 
volunteers by administering a cocktail of these drugs. CYP2B6 is the 
main catalyst of the anti-HIV drug efavirenz, while CYP2C9 has a sig-
nificant association with antitubercular drug-induced reactions. NAT2 
is involved in the metabolism of the antitubercular drug isoniazid. This 
small study in a local cohort reported a significant number (20.56%) 
of PM phenotype for the drugs metabolized by CYP2B6, highlighting 
the clinical relevance of in vivo phenotyping and therapeutic dose op-
timization.[31] Other examples where in vivo phenotyping can be used 
in therapeutic dose decisions may include CYP2A6, a CYP isoform 
which is induced by alcohol in a CYP2E1-dependent Nrf2-regulated 
process. Intriguingly, alcohol also induces CYP2A5, a mouse ana-
logue, but, unlike CYP2E1, CYP2A5 protects against alcohol toxicity.
[143] In literature, most protocols focus on 8 CYP isoforms, namely CY-
P1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, 
and CYP3A5 for genetic analysis, but in vivo phenotyping data for 
these enzymes are scanty and need to be looked upon for effective per-
sonalized treatment in vulnerable populations or those suffering from 
liver disease affecting CYP activity.

Conclusions
Cytochrome P450/CYP proteins metabolize a number of drugs and sub-
stances. Phenoconversion of a genotypically extensive metabolizer to a 
poor metabolizer phenotype, as a result of a combination of non-genetic 
reasons, may significantly alter the genotype-based clinical presump-
tion, compromise drug efficacy, and affect any potential for advancing 
the prospects of precision or personalized therapy and predictive preci-
sion medicine. Population-based studies in phenoconverted individuals 
with a genotype-phenotype mismatch have been reported for CYPs like 
CYP2B6 and CYP2D6. Determining the actual activity level of a CYP 
by determining the plasma metabolite/drug ratio in an individual in 
physiological conditions (in vivo phenotyping) can help advanced phy-
sicians to take appropriate measures in drug dose optimization and dis-
ease management in cases of treatment failure and drug dose toxicity.

Recommendations
Phenoconversion due to non-genetic reasons and in vivo phenotyping 
of hepatic CYP by calculating the plasma (drug) metabolite/drug ra-
tio in vulnerable individuals, such as those suffering from a chronic 
liver ailment or taking a combination therapy, can be beneficial in 
making drug dose decisions in cases of treatment failure or drug tox-
icity at a normal dose level. In vivo CYP phenotyping can be a useful 
tool in the hands of advanced physicians in optimizing drug dose in 
personalized therapy.
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