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Background and Aim: The purpose of this study was to investigate the 
hepatoprotective effects of quercetin, a potent antioxidant, against hep-
atotoxicity caused by cyclophosphamide (CYC) in the rat liver using 
histopathological parameters.
Materials and Methods: Thirty female rats were divided into five groups 
– control, quercetin (Q), CYC, Q+CYC, and CYC+Q. At the end of the 
study, the liver tissues were removed and stained with routine histologi-
cal hematoxylin and eosin, Periodic acid-Schiff, and Masson’s trichrome. 
Caspase-3 (Cas-3), B-cell lymphoma protein 2-associated X (Bax), tumor 
necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) levels were 
investigated in immunohistochemically stained liver tissues.
Results: Histopathological examination showed that CYC caused impair-
ment and degeneration in the structure of the hepatocyte cordon, necrosis in 
the periportal space, sinusoidal dilatation (p=0.000), congestion and edema 
(p=0.000), mononuclear cell infiltration, and increased connective tissue 
density (p=0.000). Cas-3, Bax, TNF-α, and IL-1β immunoreactivities were 
significantly higher in the CYC group (for all, p=0.000). Q administration 
gradually reduced histopathological structural damage and Cas-3, Bax, 
TNF-α (p=0.000), and IL-1β (p=0.000) intensity in the rat liver.
Conclusion: The administration of Q protected the liver tissue against 
CYC-induced damage, and successfully protected the liver against apopto-
sis, inflammation, and histopathological changes.
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munosuppressive agent that has been used in the treatment of several 
types of cancer, including solid tumors, systemic lupus erythematosus, 
rheumatoid arthritis, and multiple sclerosis.[1–3] Despite its wide spectrum 
of application, the use of CYC in the clinical setting is frequently limited 
due to cytotoxicity and side-effects such as nausea, vomiting, alopecia, 
bone marrow suppression, hepatotoxicity, nephrotoxicity, urotoxicity, 
cardiotoxicity, immunotoxicity, mutagenicity, teratogenicity, and car-
cinogenicity that have been proved in human and animal studies.[3,4]

CYC is subjected to metabolic activation by the hepatic microsomal 
cytochrome P450 mixed function oxidase system to produce its two 
metabolites, phosphoramide mustard and acrolein, responsible for the 
induction of oxidative stress. These produce an alkylating effect on 
DNA cross-links and on DNA itself, thus causing cytotoxicity.[3,5,6] Ac-
rolein is capable of binding to reduced glutathione (GSH) and can thus 
lead to overproduction of reactive oxygen species (ROS), followed by 
oxidative stress and lipid peroxidation.[7,8] Experimental evidence has 
shown that CYC causes lipid peroxidation and protein oxidation in 
the liver, oxidative stress being implicated in CYC hepatotoxicity.[9,10] 
Studies have also reported that CYC-induced histological damage in 
the liver is associated with alterations in enzyme activities.[4,11] Oxida-
tive stress is regulated by cells’ antioxidant mechanisms and triggers 
apoptotic cell death.[12] Improving chemotherapy tolerance against the 
toxic metabolites of CYC is an urgent problem. Very great importance 
is therefore attached to the investigation of agents capable of reducing 
side-effects without impairing drugs’ main therapeutic effects.[13] Re-
searchers have recently emphasized that biological compounds with 
antioxidant and anti-inflammatory characteristics can help protect 
cells and tissues against the deleterious effects of CYC-induced free 
radicals.[3,14]

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) (Q) is a plant flavonoid 
compound and member of the polyphenolic group found in numerous 
fruits and vegetables and[6,15] numerous pharmacological studies have 
reported that it exhibits potent antioxidant, anti-angiogenic, anti-in-
flammatory, neuroprotective, and anti-apoptotic activities.[16–18] It has 
also been suggested that due to its powerful antioxidant and anti-in-
flammatory activities, it can prevent diseases such as diabetes, cancer, 
and obesity. In addition to being a potent antioxidant and freer radical 
scavenger, Q has been described as more powerful than Vitamins E and 
C and other antioxidants that prevent lipid peroxidation.[18]

 The purpose of this study was to investigate the preventive and protec-
tive properties against hepatic inflammation, apoptosis, and fibrosis of 
Q, a potent antioxidant and CYC-induced hepatotoxicity using histo-
pathological parameters.
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Introduction
Cyclophosphamide (N,N-bis(2-chloroethyl) tetrahydro-2H-1, 3,2ox-
azaphosphorine-2-amine 2-oxid; CYC) is a synthetic alkylating agent 
chemically related to nitrogen mustards. It is an antineoplastic and im-
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Materials and Methods
Ethical procedures and animals
Thirty-six healthy female Wistar Albino rats (age 12–16 weeks, weight 
300–400 g) were obtained from the Harran University (HRU) Experi-
mental Animals Application and Research Center (HRU-HDAM), (San-
liurfa, Turkiye) for use in the study. The study commenced following 
receipt of approval from the HRU animal experiments local ethical com-
mittee (HADYEK) (study protocol license no. 2022/010/08). All rats 
were housed under standard laboratory conditions at 22±2°C, in 50% 
±10 humidity and in a 12-h light:12-h dark cycle throughout the exper-
iment. All rats were also given standard laboratory chow and ad libitum 
access to water during the experiment. All animals received human care 
according to the criteria outlined in the “Guide for the Care and Use 
of Laboratory Animals” published by the National Institutes of Health.

Experimental Design
The 30 female Wistar Albino rats (age 12–16 weeks, weight 300–400 g) 
were randomly assigned to one of five groups:
Control group (n: 6): The pure control group exposed to no procedures.
Q group (n: 6): 100 mg/kg Q was administered per day for 5 days via 
the oral route (p.o.).[19]

CYC group (n: 6): This group received 200 mg/kg CYC through the 
intraperitoneal route (i.p.) on the 1st day of the experiment, followed by 
8 mg/kg per day (total 14 doses).[20] At the end the 15th day, the animals 
were sacrificed by exsanguination.
Q + CYC group (n: 6): Q 100 mg/kg per day was administered p.o. for 
5 days, followed by a first i.p. dose of CYC of 200 mg/kg CYC and 
maintenance doses of CYC of 8 mg/kg per day (total 14 doses). These 
animals were sacrificed by exsanguination on day 20.
CYC + Q group (n: 6): 200 mg/kg CYC was administered i.p. on the 
1st day of the experiment, followed by CYC 8 mg/kg per day i.p. (total 
of 14 doses), and then by 100 mg/kg Q administration p.o. for 5 days. 
These animals were sacrificed by exsanguination at the end of the ex-
periment (day 20).
Following sacrifice by exsanguination under general anesthesia at the 
conclusion of the experimental period, liver tissue specimens were col-
lected for light microscopic examinations.

Histopathological Preparation and Evaluation of the Rat Liver
Liver tissues from rats in all the study groups were fixed in 10% of 
neutral formaldehyde solution for histopathological examination. These 
were then dehydrated and rendered transparent and embedded in paraf-
fin blocks. Sections 5 µm in thickness were then taken from the paraf-
fin blocks using a semi-automatic rotary microtome (Thermo Shandon 
Finesse ME+ Microtome, Runcorn, UK) and stained with hematoxylin 
and eosin (H&E), Periodic acid-Schiff (PAS), and Masson’s trichrome 
(Trichrome Masson Stain Kit-Sigma Aldrich, Code: HT15-1KT, St. 
Louis, USA). All findings and evaluations were recorded onto a comput-
er using a Zeiss Axioscope II (Carl Zeiss Microscopy GmbH, Göttingen, 
Germany) microscope and photographed with a Zeiss Axiocam MRc 
camera attachment (Carl Zeiss MicroImaging GmbH, Göttingen, Ger-
many). Hepatic degeneration/regeneration in every microscopic speci-
men was evaluated based on the following criteria using morphometric 
and semiquantitative scoring: measurement of central vein diameter; the 
degrees of sinusoidal dilatation, hepatocyte degeneration, inflammatory 

cell infiltration, vacuolization and congestion, and fibrovascular area[7] 
were scored: normal=0, mild=1, moderate=2, and severe=3.

Immunohistochemistry Staining
Sections 5 µm in thickness were taken from the paraffin-embedded 
blocks and deparaffinized. After washing, they were next washed on 
PBS buffer solution for 5 min. The sections were then boiled in citrate 
buffer (pH: 6.0), and antibody retrieval was performed. The specimens 
washed in PBS were next subjected to peroxidase blocking in 3% H2O2 
solution. Tumor necrosis factor-alpha (TNF-α) (Santa Cruz Biotech-
nology Inc., Heidelberg, Germany, cat no. sc-52746), interleukin 1 beta 
(IL-1β) (Santa Cruz Biotechnology Inc., Heidelberg, Germany, cat no. 
sc-52012) Caspase-3 (Cas-3) (Santa Cruz Biotechnology, Inc., Heidel-
berg, Germany, cat no. sc-56053), and Bax (Santa Cruz Biotechnology, 
Inc., Heidelberg, Germany, cat no. sc-7480) antibodies diluted to 1:100 
were then dropped onto the specimens and left to incubate at +4°C. The 
subsequent procedures were performed using secondary antibody kits 
(Thermo Scientific, MA, USA, cat no. TP-060-HL), and al steps were 
carried out in line with the manufacturer’s instructions. A 3,3’-Diami-
nobenzidine chromogen kit was employed (Sigma-Aldrich St. Louis, 
USA, cat no. D3939). The specimens were counterstained with Mayer’s 
hematoxylin, covered with Entellan, and examined under a light micro-
scope, and microphotographs were taken.[21] Three distinct areas were 
randomly selected in each section for immunohistochemical analyses. 
TNF-α and IL-1β positivity was defined as brown color and numeri-
cal evaluations were performed. Scores defined in terms of percentage 
frequency were used for TNF-α, IL-1β, Cas-3, and Bax expression in 
the area under examination: No expression (0), mild (1), moderate (2), 
powerful (3), and very powerful (4) expression. Positive cell percentag-
es were scored <5% positive expression (0), 6%–15% (1), (16%–50% 
(2), 51%–80% (3), and >80% (4).[22]

Statistical Analysis
All statistical analyses were performed using Statistical Package for 
the Social Sciences (SPPS) version 24.0 (IBM SPSS Inc., Chicago, IL, 
USA). Mean (±) standard deviation (SD) was employed for morpho-
logical evaluations and immunohistochemical damage scores. Kruskal–
Wallis H analysis of variance was applied for multiple one-way com-
parisons between groups. Dual comparisons between groups exhibiting 
significant values were evaluated using Tamhane’s T2 test. Statistical 
significance was set at p<0.05 for all tests.

Results
Histopathology and Immunohistochemical Analyses
Histopathological examinations performed based on H&E, PAS, and 
Masson’s trichrome staining revealed normal histological structures 
in liver tissues from the control and Q groups. In terms of morphol-
ogy, hepatocytes were polygonal in shape, formed cords around the 
central vein were separated by normal sinusoidal spaces (Fig. 1a, b), 
the hepatocytes preserved their glycogen structure (Fig. 2a, b), and 
the portal triad was normal in appearance (Fig. 3a, b). Hepatocytes 
in liver tissue from the CYC group exhibited a heterochromatic 
structure, an impaired cord structure, necrosis in the periportal area, 
central vein/sinusoidal congestion, edema and dilatation, and wide-
spread findings of mononuclear cell infiltration among the Remark 
cords and in the portal area (Fig. 1c-4). Hepatocyte glycogen stores 
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were depleted (Fig. 2c), and a marked increase in connective tissue 
was present in the portal area (Fig. 3c1-2). These histopathological 
damage findings decreased in the Q+CYC and CYC+Q treatment 
groups, although mild hepatocyte degeneration was detected in the 
Q+CYC group. The morphological structure of the CYC+Q group 
was close to that of the control group (Fig. 1d, e). The glycogen con-
tent of the hepatocytes was more pronounced compared to the CYC 
group, but was lower than in the control group, while the structure 
of the portal area was close to normal (Fig. 2d, e; Fig. 3d, e). The re-
sults of semiquantitative histopathological examination of the liver 
are shown in Table 1. Morphometric and semiquantitative scoring 
revealed significantly higher hepatocyte degeneration, vascular con-
gestion, sinusoidal dilatation, infiltration, connective tissue density, 
and central vein diameter in the CYC group compared to the control 
group (p<0.01). Histological damage score findings in the Q+CYC 
and CYC+Q groups were significantly lower than in the CYC group 
(p<0.01). No significant difference was observed between the Q+-
CYC and CYC+Q groups (p>0.05).

Biomarkers of Inflammatory Cytokines and Apoptosis
Liver samples from the experimental groups were stained immunohisto-
chemically to determine the intensity of the IL-1β, TNF-α, Bax, and Cas-3 
antigens. The immunoreactivity scores are shown in Table 2. No IL- 1β, 
TNF-α, Bax, or Cas-3 immune positivity were observed in the control or 
Q groups (p>0.05) (Fig. 4a, b; Fig. 5a, b). Pro-inflammatory and apoptosis 
markers increased markedly in the CYC group compared to the control 
group (Fig. 4c; Fig. 5c) (p<0.01). Moreover, TNF-α, Bax, and Cas-3 in-
tensities decreased significantly in the Q+CYC and CYC+Q group com-
pared to the CYC group (p<0.01). There was no significant difference 
between the Q+CYC and CYC+Q groups (p>0.05) (Fig. 4d, e; Fig. 5d, e).

Discussion
The liver is one of the most vital organs in the body. Despite its high 
regenerative capacity in case of toxicity, it is defenseless in the face 
of severe toxicity, when severe hepatotoxic damage can develop.[23,24] 
Hepatotoxicity is the main reason for the US Food and Drug Adminis-
tration refusing to approve drugs or withdrawing their approval.[25] The 
liver also plays a protective role in the pathogenesis of diseases and the 
detoxification of various chemicals and drugs.[26] Increased free radical 
production and oxidative stress can be induced during xenobiotic detox-
ification.[25] CYC is a cytostatic alkylating agent possessing broad anti-
tumor activity, that is primarily metabolized in the liver to active metab-
olites, and that is chemically related to nitrogen mustards.[24,27,28] Studies 
have shown that excessive or long-term use of CYC can cause hepato-
toxicity.[24,29] Due to the inescapable use of CYC in clinical treatment, 
improving tolerance to cytostatic chemotherapy is a matter of urgency, 
and it is therefore important to discover substances capable of reducing 
the effects of drugs without lowering their therapeutic effectiveness.[13,24] 
Q is a natural flavonoid widely present in several plants and vegetables. 
It possesses unmatched biological characteristics, including antioxidant, 

Figure 1. Photomicrographs depicting liver section of rat from different 
groups. (a) Control Group, (b) Q Group, (c-1–4) CYC Group, (d) Q+CYC 
Group, (e) CYC+Q Group, Separation and degeneration in the hepato-
cytes cordons (left arrow), leukocyte infiltration (arrowhead), necrosis 
(right arrow), congestion, edema (star), sinusoids dilatation (down arrow) 
and CV; Central ven, CYC; Cyclophosphamide, Q; Quercetin, (H&E 40x).
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Figure 2. Light Micrographs of 
Liver Tissues from the Experi-
mental Groups. (a) Control Group, 
(b) Q Group, (c1–4) CYC Group, 
(d) Q+CYC Group, (e) CYC+Q 
Group. Glycogen stores in hep-
atocytes (chevron). CYC; Cy-
clophosphamide, Q; Quercetin, 
(Periodic acid Schiff 40x).
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anti-inflammatory, anti-carcinogenic, and antiviral properties. It also 
represents the basis of potential benefits to overall health and resistance 
to disease, including its capacity to stimulate mitochondrial biogenesis.
[30,31] The essential aim of this study was to seek to understand the thera-
peutic effect of Q against CYC-induced liver damage.
Cengiz et al.[1] reported that histopathological examination revealed 
that exposure to CYC caused shrinkage, opacity, irregularity around 
the hepatocyte nucleus, and dark staining due to increased eosinophil-
ia in cytoplasm. Senthilkumar et al.[11] observed widespread edema 
and sinusoidal narrowing in the liver tissues of rats treated with CYC. 
Ayhancı et al.[32] reported parallel findings in their own histopatholog-
ical analyses. Basu et al.[33] observed findings of severe hepatocellular 
swelling, expansion of the central vein, inflammatory cell infiltration, 
fatty degeneration, and vacuolization in the hepatic histology of mice 
treated with CYC. In agreement with previous studies,[1,24,33,34] in terms 
of hepatic histopathology in the present study, CYC impaired hepato-
cyte cell membrane integrity, causing destruction of hepatic lobules, 
enlargement of the central vein, and accumulation of inflammatory 
cells. CYC-derived toxicities are believed to be essentially associated 
with the induction of oxidative stress through the formation of free radi-
cals in normal tissues and organs.[35,36] The hepatic biotransformation of 
CYC to phosphoramide mustard and acrolein results in a high level of 
free radical formation.[4,33] Acrolein inhibits P-450 by alkylating sulfhy-
dryl groups during this process. Acrolein is essentially metabolized by 
the rapid modification of GSH sulfhydryl groups (GSG) and gives rise 
to mercapturic acid which is expelled through urine. As a result of this 
mechanism, acrolein is reported to compromise the antioxidant defense 
system by directly increasing cellular oxidative stress.[36,37] The hepatic 
histoarchitecture was protected through the administration of 100 mg/
kg Q in the present study, and its ability to mitigate liver damage was 

more evident in the group receiving Q together with CYC. Q has been 
reported to possess antioxidant activity, to contain hydroxyl groups 
and double bonds that result in free radical scavenging, and to provide 
hepatoprotection.[38–40] In their study evaluating histological changes in 
rats exposed to lead poisoning, Liu et al.[41] reported that Q treatment 
significantly reduced histological changes in hepatocyte degeneration. 
Decreased histopathological damage has also been reported in a group 
given Q in methotrexate-induced liver damage scores.[42] The findings 
of the present study confirmed that CYC caused hepatic damage, re-
sulting from CYC metabolites impairing the integrity of the hepato-
cyte membrane.[1] We concluded that the biological properties of Q may 
provide gradual protection of the morphological structure of the liver 
against the injury.

Table 1. Hepatic histopathological damage scores in experimental rat groups

Groups Hepatocyte Dilatation Congestion Inflammatory Fibrovascular Central vein 
 degeneration   cell infiltration area diameter 
 Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

Control 0.27±0.45 0.20±0.41 0.40±0.50 0.33±0.48 0.23±0.43 14.6±7.11

Q  0.23±0.43 0.27±0.45 0.20±0.41 0.43±0.50 0.40±0.50 18.24±6.74

CYC 2.40±0.50a,b 1.40±0.50a,b 1.50±0.51a,b 1.63±0.49a 1.80±0.41a 90.23±40.27ab

Q+CYC 0.60±0.50b 0.63±0.49b 0.83±0.38b 0.33±0.55b 0.50±0.51b 37.95±17.5b

CYC+Q 0.70±0.47a,b 0.40±0.50b 0.53±0.51b 0.20±0.41b 0.50±0.57b 27.82±14.92b

SD: Standard deviation; CYC: Cyclophosphamide; Q: Quercetin; a: P<0.05 compared to the control group; b: P<0.05 compared to the CYC group.

Table 2. TNF-α, IL-1β, Cas-3, and bax immunopositivity of 
experimental rat groups

Groups TNF-α IL-1β Cas-3 Bax 
 Mean±SD Mean±SD Mean±SD Mean±SD

Control 0.40±0.50 0.33±0.48 0.37±0.49 0.20±0.41

Q  0.43±0.57 0.37±0.49 0.20±0.41 0.40±0.50

CYC 1.80±0.66a 1.57±0.57a 1.43±0.73a 1.57±0.50a

Q+CYC 0.80±0.71b 0.70±0.70b 0.70±0.47b 0.73±0.45a,b

CYC+Q 0.70±0.65b 0.60±0.56b 0.60±0.50b 0.53±0.51b

SD: Standard deviation; CYC: Cyclophosphamide; Q: Quercetin; a: P<0.05 
compared to the control group; b: P<0.05 compared to the CYC group.

Figure 3. Light Micrographs of Liver Tissues from the Experimental 
Groups. (a) Control Group, (b) Q Group, (c1–4) CYC Group, (d) Q+CYC 
Group, (e) CYC+Q Group. Connective tissue density in portal area (ar-
row), leukocyte infiltration (arrowhead), sinusoidal dilations and congestion 
(star). CYC; Cyclophosphamide, Q; Quercetin, (Masson’s Trichrome 40x).

a

c-1

d

b

c-2

e



doi: 10.14744/hf.2023.2023.0026 Hepatology Forum

139Hepatology Forum 2023 Vol. 4 | 135–141

Cytokines play important roles in the development of cellular and 
humoral immune responses, in triggering inflammatory responses, 
in the regulation of hematopoiesis, in controlling cell proliferation 
and differentiation, and in initiating wound healing processes.[43] A 
wide spectrum of in vivo and in vitro studies has shown that CYC 
can cause an inflammatory response in various organs.[5,44] CYC has 
been reported to cause a tissue-wide inflammatory reaction with 
the upregulation of nuclear factor-κB (NF-κB) that leads to an in-
crease in the production of pro-inflammatory cytokines such as tu-
mor necrosis factor-α (TNF-α) and interleukin-1β (IL-1)[7,23] and to 
reduce anti-inflammatory IL-10 expression.[43] Shi et al.[5] reported 
increased levels of the pro-inflammatory cytokines TNF-a and IL-
1β in liver tissue exposed to CYC, and a decrease in the levels of 
the anti-inflammatory cytokine IL-10. TNF-α is a pro-inflammatory 
cytokine primarily released by macrophages and monocytes, and 
several studies have emphasized significant increases in hepatic 
gene expression and protein following CYC application.[38,45] An-
other study of CYC-induced injury observed invasion by large num-
bers of leukocytes and necrotic areas in the parenchyma in terms of 
the histopathological manifestation.[23] Several studies have shown 
that Q reduced the secretion of pro-inflammatory cytokines such as 
TNF-α and IL-1β.[30,46] In terms of pro-inflammatory cytokines, the 

immunohistochemical findings of the present research were consis-
tent with those of previous studies, with CYC-induced increased in 
TNF-a and IL-1β levels being observed. Q administration reduced 
the expression of TNF-a and IL-1β and may exhibit preventive/pro-
tective activity associated with an anti-inflammatory effect against 
CYC-related inflammation.
Another aspect of cytokines is that they indicate apoptosis in he-
patic tissue through the upregulation of Cas-3 and downregulation 
of Bcl-2 on the apoptotic pathway.[23] The mitochondrial pathway 
of intracellular apoptosis is controlled by proteins from the Bcl-
2 family including both hem anti-apoptotic (essentially Bcl-2) and 
pro-apoptotic (essentially Bax) factors. Mitochondrial external 
membrane integrity is preserved by Bcl-2, while membrane perme-
ability increased by Bax releases apoptogenic factors that activate 
Cas-3 and Caspase-9 in the cytosol.[7,47] Cas-3, the principal driver 
of apoptosis, causes chromatin concentration, and protein and DNA 
fragmentation.[7] Studies have reported that CYC induces apoptosis 
in liver tissue.[37,48] Alqahtani and Mahmoud[45] investigated CYC-in-
duced hepatocyte apoptosis with proapoptotic factors and reported 
an increase in Cas-3 and Bax gene and protein expression levels. 
The present research is consistent with previous studies, showing 
that CYC increased Bax and Cas-3 expression in hepatic tissue.

Figure 4. The immunohistochemical staining for Tumor Necrosis Factor (TNF-a) and Interleukin-1β (IL-1β) Expression in the liver samples of different 
study groups. (a) Control Group, (b) Q Group, (c) CYC Group, (d) Q+CYC Group, (e) CYC+Q Group. TNF-α and IL-1β positive immunostaining (ar-
rowhead) (40x). CYC; Cyclophosphamide, Q; Quercetin.

a

a

b

b c-1 c-2

c d

d

e

e

Figure 5. The immunohistochemical staining for Cas-3 and Bax Expression in the liver samples of all groups. (a) Control Group, (b) Q Group, (c) CYC 
Group, (d) Q+CYC Group, (e) CYC+Q Group. Cas-3 and Bax positive immunostaining (arrowhead) (40x). CYC; Cyclophosphamide, Q; Quercetin.
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Research has emphasized that Q can prevent cell death by reducing 
Cas-3 activation. Yang et al.[49] showed that Q can prevent cell death 
by lowering Cas-3 activation in an ischemic brain damage model. Jia 
et al.[50] determined that Q restored cadmium-induced increases in Cas-
3 and Bax activity and decreases in Bcl expression in granulosa cells. 
Those authors emphasized that Q is a powerful antioxidant with cy-
toprotective effects in preventing granulosa cell cytotoxicity caused 
by exposure to cadmium. The present study confirms these previous 
studies in the literature and showed that CYC increased Bax and Cas-3 
expression in hepatic tissue, while the application of Q significantly re-
duced that apoptosis. Although this research shows that Q affects Cas-3 
and Bax activation and may play an important role in the apoptotic 
process, further supporting studies are now needed.
Hepatic fibrosis is another outcome of hepatotoxicity. The etiology of fi-
brosis commences with acute hepatocyte injury under the effects of ROS. 
ROS, inflammation, and apoptosis begin releasing certain pro-fibrotic 
cytokines, such as TNF-α, that activate quiescent hepatic stellate cells 
and convert them into microfibroblasts.[51] The presence of a pyknotic 
nucleus, vacuolization and fatty changes (steatosis), and increased adi-
pose tissue in the portal area were widely observed histological findings 
resulting from CYC administration in this study. However, Q reduced 
steatosis and adipose tissue intensity. On the basis of these findings, we 
think that CYC induces hepatotoxicity marked by inflammation, fibrosis, 
and apoptosis, while Q can protect the liver from severe fibrotic findings.

Conclusion
In conclusion, the three main players in CYC-induced hepatotoxicity, 
oxidative stress, apoptosis, and the cumulative impact of these lead to 
damage to the hepatocyte cell membrane and impairment of its his-
tological structure. However, the application of Q exhibits protective/
preventive effects against that damage through its antioxidant, anti-in-
flammatory, and antiapoptotic properties.

Ethics Committee Approval: The Harran University Animal Experiments Lo-
cal Ethics Committee granted approval for this study (date: 29.12.2022, number: 
2022/010/08).
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