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Background and Aim: Portal hypertension (PH) is a syndrome associ-
ated with cirrhosis and characterized by a progressive increase in portal 
pressure, with consequent compensatory vascular dilation. Gastric vascular 
changes associated with oxidative and nitrosative stress characterize the 
clinical presentation of portal hypertensive gastropathy (PHG). In addition, 
the inflammatory process is considered an aggravating factor for severity by 
contributing to gastric tissue injury. The aim of this study was to investigate 
the synergistic anti-inflammatory and antioxidant action of N-acetylcyste-
ine (NAC) in the stomach of rats with PH.
Materials and Methods: Eighteen Wistar male rats were used in this ex-
perimental protocol and were divided into three groups with six in each 
group: sham-operated (SO), partial portal vein ligation (PPVL), and PPVL 
+ NAC. Treatment with NAC at a dose of 10 mg/kg (i.p.) was initiated on
day 8 after surgery and continued for 7 days. We evaluated the expression
of iNOS, NQO-1, HSP-90, and SOD by Western blot, as well as nuclear
factor-kappa B (NF-κB) and tumor necrosis factor (TNF)-α staining by im-
munohistochemistry, in the rat stomach.
Results: The PPVL group exhibited increased expression of HSP-90, 
iNOS, SOD, and NQO-1 when compared with controls. NAC reduced the 
expression of all studied proteins. Similarly, NF-κB and TNF-α staining 
was increased in PPVL animals versus controls and reduced in PPVL + 
NAC versus PPVL animals, respectively.
Conclusion: These results suggest the effectiveness of NAC as a dual an-
ti-inflammatory and antioxidant in animals with experimental PHG induced 
by partial ligation of the portal vein.

Keywords: Inflammation; N-acetylcysteine; oxidative stress; portal hyper-
tension.

Introduction
The portal system is responsible for leading blood from the intra-abdom-
inal portion of the gastrointestinal tract, pancreas, spleen, and gallblad-
der to the liver sinusoids via the terminal branches of the portal vein.[1]

Pre-hepatic abnormalities (such as splenic vein thrombosis), intrahep-
atic abnormalities (such as cirrhosis), and post-hepatic conditions (such 
as Budd-Chiari syndrome) may all influence blood pressure within the 
portal system. The only shared characteristic of the aforementioned ex-
amples is the emergence of an anatomical barrier to blood flow. This 
obstacle triggers a compensatory mechanism to reduce blood pressure, 
promoting the development of hyperdynamic collateral circulation. 
This condition, characterized by a progressive increase of pressure in 
the portal system, is called portal hypertension (PH).[2]

The resulting bypass of blood flow from the site of obstruction di-
rectly into the systemic circulation triggers serious complications, 
such as ascites, hepatic encephalopathy, and gastrointestinal bleed-
ing, with the latter accounting for the high mortality rate of 50% 
among patients with PH.[3]

Microcirculatory alterations in the gastric mucosa as a result of the 
characteristic vasodilation of HP were described by McCormack 
et al. in 1985.[4] Several different terms have been used to describe 
these changes, such as inflammatory gastritis, gastric mucosal vas-
culopathy, portal hypertensive mucosa, and portal hypertensive gas-
tropathy (PHG).[5]

PHG is characterized by vasodilation secondary to obstruction of 
gastric blood flow, and nitric oxide (NO) is the main mediator in this 
vascular activation pathway.[6] NO is an endothelium-derived relaxing 
factor produced from L-arginine and molecular oxygen, in a process 
catalyzed by enzymes in the nitric oxide synthase (NOS) family. The 
three major NOS isoforms, neuronal NOS (nNOS and NOS1), induc-
ible NOS (iNOS and NOS2), and endothelial NOS (eNOS and NOS3), 
are described in the literature, with well-established roles. NOS2 can 
be expressed in various cell types, and it plays an important role in in-
flammatory diseases and septic shock. NOS3 is expressed in endothelial 
cells and acts on endothelial smooth muscle relaxation.[7] All three iso-
forms have been associated with PH; however, the most influential iso-
forms in this syndrome are NOS2 and NOS3.

[8] NOS3 is closely related 
to several factors and proteins that have positive and negative impacts 
on its production. Proteins that positively influence the production of 
this enzyme include the positive regulator molecular chaperone heat 
shock protein 90 (HSP90).[9]
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Shear stress and vascular endothelial growth factor (VEGF) also act 
on the pathway that stimulates the production of NOS3, and both 
have been studied previously in investigations conducted by our re-
search group.[10,11]

NOS2 produces a relatively high level of NO. This isoform is expressed 
in response to stimulation from lipopolysaccharides or inflammatory 
cytokines, and its expression is modulated by transcriptional mecha-
nisms. Nuclear factor-kappa B (NF-κB) is the primary mediator for the 
induction of iNOS, which, in turn, is activated mainly by tumor necro-
sis factor (TNF)-α and oxidative stress.[8]

In PH, overproduction of NO via NOS2 and NOS3 determines its re-
action with the superoxide anion radical (O2

–º), leading to the for-
mation of peroxynitrite (ONOO–). This, in turn, is a highly reactive 
species that can contribute to cellular damage, thus aggravating the 
overall clinical picture.[12]

The inflammation characteristic of PH affects gastric regeneration 
and defense, thus increasing the risk of bleeding.[13] Currently, one 
hypothetical treatment strategy involves the direct reduction of 
proinflammatory chemokines and cytokines, which contribute to the 
progression of PH.[14]

Thus, treatment with both antioxidant and anti-inflammatory action 
would represent a promising candidate for minimizing the conse-
quences of PHG. Previous work published by our research group has 
demonstrated the antioxidant properties of N-acetylcysteine (NAC), 
a molecule used extensively in clinical practice, in an experimental 
model of PH.[11] The aim of this study was to evaluate the synergistic 
action of NAC as an antioxidant and anti-inflammatory in PHG. 

Materials and Methods
Ethics
All procedures were carried out in accordance with current Brazilian 
legislation for the practice of scientific research using animals (Law 
11.794 of October 8, 2008, 2013 Brazilian Guidelines for the Care 
and Use of Animals for Scientific and Educational Purposes, and 2013 
CONCEA Guidelines for the Practice of Euthanasia) and followed the 
recommendations of the Principles of Care for Laboratory Animals for-
mulated by the National Society for Medical Research and the Guide 
for the Care and Use of Laboratory Animals published by the National 
Institutes of Health.

Animal Groups and Experimental Protocols
The animals used in this study were obtained through vivarium, in ac-
cordance with institutional specifications. Throughout the experiment, 
animals were kept in plastic bin-type cages (47 × 34 × 18 cm) lined with 
wood shavings, under a 12-h light/dark cycle, at a temperature of 22 ± 
4°C. They had access to water ad libitum and were fed commercially 
available rodent chow (Purina®–Nutripal, Porto Alegre, RS, Brazil), ap-
proximately 16 g/day.
On the first day of the experiment, the Wistar male rats were randomly 
divided into three groups (n=18 animals): sham-operated (SO) (n=6), 
partial portal vein ligation (PPVL) (n=6), and PPVL + NAC (n=6). 
All animals were weighed (±250 g) and anesthetized with ketamine 
(100 mg/kg i.p.) and xylazine (10 mg/kg i.p.). Once a proper plane of 
anesthesia had been achieved, a midline laparotomy was performed, 
and the bowel was gently retracted with a gauze pad soaked in saline. 
In group SO, only manipulation of the portal vein was performed, 

whereas in the other groups, the vein was ligated for experimental 
induction of PH. Briefly, the portal vein was isolated with 3-0 silk 
thread, partially blocked using a 20G needle placed in front of the ves-
sel, and tied off. After ligation, the needle was removed, thus leaving 
the vein partially obstructed. Bowel loops were gently replaced into 
the abdomen, 10 mL of saline solution infused the abdominal cavity, 
and the muscle closed with running sutures. The experimental model 
used in this study was first described by Sikuler et al.[15] in 1985 and 
induces pre-hepatic PH.
After the surgical procedures, animals were kept in individual cages. 
Metamizole was administered for postoperative analgesia, with the first 
dose given via intramuscular injection (200 mg/kg) and subsequent 
doses given orally (500 mg/kg every 8 h for 72 h).
Seven days were allowed to elapse for the establishment of PHG before 
starting treatment. NAC (Sigma Chemical Co., St. Louis, MO, USA; 
CAS registry number 616-91-1) was administered intraperitoneally at 
a dose of 10 mg/kg, in agreement with previous studies.[11,12] The drug 
was dissolved in 0.6 mL of saline (0.9% NaCl), and the same volume 
was administered to groups that received vehicle only (SO and PPVL). 
Treatment was continued for 7 days, thus completing the full 15-day 
experimental period.

Euthanasia and Collection of Tissue Samples
On day 15, animals were again weighed and anesthetized with ke-
tamine (100 mg/kg i.p.) and xylazine (10 mg/kg i.p.). Once adequate 
anesthesia had been achieved, a midline laparotomy was performed, 
and the stomach was resected for analysis. One portion of the stomach 
was frozen at -80°C, and a second fragment was fixed in 10% buffered 
formalin for 24 h. Then, 3-mm sections were cut from the paraffin block 
using a rotary microtome.

Western Blot
Western blot analysis was performed using cytosolic extract pre-
pared from stomach homogenates. The protein concentration of each 
sample was measured by the Bradford method. Then, lysate proteins 
were separated by sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis and transferred to polyvinylidene fluoride membranes. 
The membranes were blocked by submerging in Tris–buffered saline 
and 0.05% Tween (TTBS) with 5% nonfat dry milk for 1 h at room 
temperature and probed overnight at 4°C. The following antibodies 
were used: mouse polyclonal antibody [NOS2 (sc-7271), Santa Cruz 
Biotechnology, Santa Cruz, CA, USA]; mouse monoclonal antibody 
[HSP90 (sc-101494), Santa Cruz Biotechnology, Santa Cruz, CA, 
USA]; goat monoclonal antibody [NQO1 (sc-16464), Santa Cruz 
Biotechnology, Santa Cruz, CA, USA]; goat monoclonal antibody 
[SOD (sc-8637), Santa Cruz Biotechnology, Santa Cruz, CA, USA], 
at 1:200 dilution with TTBS in 5% nonfat dry milk; and anti-β-actin 
(42-kDA) antibody (Sigma Aldrich, St. Louis, MO, USA) at 1:1000 
dilution with TTBS in 5% nonfat dry milk. After overnight incuba-
tion, the membranes were washed with TTBS and incubated for 1 h at 
room temperature with secondary goat anti-mouse IgG-HRP sc-2005, 
donkey anti-goat antibody (sc-2020, Santa Cruz Biotechnology, Santa 
Cruz, CA, USA, 1:4000). Protein detection was performed via chemi-
luminescence using a commercial ECL kit (Amersham Pharmacia 
Biotech, Little Chalfont, England). The density of the specific bands 
was quantified with imaging densitometry software (Scion Image, 
Maryland, MA, USA).[16]
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Immunohistochemistry
The expression of NF-κB and TNF-α in stomach tissue was analyzed 
using immunohistochemical techniques. Buffer at 100°C was used for 
antigen retrieval, and endogenous peroxidase activity was blocked by in-
cubation in absolute methanol. Slides were then incubated with rabbit 
polyclonal antibody (NF-κB [sc-9072], 1:200, Santa Cruz Biotechnology, 
Santa Cruz, CA, USA) and goat monoclonal antibody (TNF-α [sc-1351], 

1:200, Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 
4°C, followed by washing with buffer and incubation with secondary 
goat anti-rabbit IgG-HRP (sc-2004) for 30 min at room temperature. The 
slides were analyzed under a microscope equipped with a digital camera, 
and images were captured using Image-Plus software (Media Cybernet-
ics, Bethesda, MD, USA). Quantification of staining for both markers was 
performed by digital image analysis in Adobe Photoshop® CS3 Extended 
10.0, by counting the number of pixels stained. The level of expression 
was determined by multiplying the average density of the image by the 
percentage of positively stained areas (those colored brown).[17]

Statistical Analysis
Analysis of Variance was used to evaluate the quantitative data, fol-
lowed by the Student–Newman–Keuls test for the analysis of multiple 
comparisons. The significance level was set at 5% (p<0.05). All data are 
presented as mean ± SE. The GraphPad InStat version 3.0 program for 
Windows was used.

Results
Western Blotting Analysis
Analysis of HSP90 protein expression revealed a significant increase 
in the PPVL group compared with controls (p<0.01). NAC effectively 
reduced these values in the LPVP + NAC group (p<0.01) (Fig. 1).
When evaluating the expression of iNOS, a decrease was observed in 
the LPVP + NAC group (p<0.05) and a significant increase in the LPVP 
group (p<0.01) (Fig. 2).
NAC was able to substantially reduce SOD values in the treated group, 
up to control levels (p<0.05). In the LPVP group, SOD was overex-
pressed when compared with the SO group (p<0.05) (Fig. 3).
In the analysis of NQO1 protein expression, NAC significantly reduced 
the values in the LPVP + NAC group when compared with the LPVP 

Figure 1. Western blot for HSP90. Effects of PPVL and NAC administra-
tion on HSP90, quantified by the Western blot technique.
*: P<0.01; **: P<0.01 (n=6); SO: Sham-operated group; PPVL: Partial portal vein 
ligation group; PPVL + NAC: Partial portal vein ligation group plus N-acetylcysteine 
treatment.
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Figure 3. Western blot for SOD. Effects of PPVL and NAC administration 
on SOD, quantified by the Western blot technique.
*: P<0.05; **: P<0.05 (n=6).
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Figure 2. Western blot for iNOS. Effects of PPVL and NAC administration 
on iNOS, quantified by the Western blot technique.
*: P<0.01; **: P<0.05 (n=6).
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group (p<0.05), which had a significantly increased expression when 
compared with the control group (p<0.05) (Fig. 4).

Immunohistochemistry
Animals in the PPVL group showed a significant increase in positive 
staining for NF-κB as compared with controls (p<0.01). NAC was ef-
fective in reducing this immunoreactivity in the PPVL + NAC group 
(p<0.01) (Fig. 5).
The same pattern of expression was observed in the analysis of TNF-α. 
In the PPVL group, there was intense staining as compared with the SO 
group (p<0.01); in the PPVL + NAC group, this immunoreactivity was 
reduced (p<0.01) (Fig. 6).

Discussion
PH, often described as a complication of chronic liver disease, is char-
acterized by increased blood pressure in the portal system, splanchnic 
vasodilation, and subsequent formation of portosystemic collaterals.[18]

The stomach is one of the main sites affected by this marked increase in vas-
cular diameter; accordingly, gastropathy is one of the most frequent compli-
cations of PH. In practice, gastric lesions are typically located at the fundus 
and superior portion of the body of the stomach[19] and are characterized by 
a mosaic-like pattern, with or without cherry-red spots.[20] Still, the release 
of inflammatory mediators and consequent gastric inflammation appears to 
contribute to the development and worsening of gastropathy of PH.[21]

The involvement of NO in the development of hyperdynamic collateral 
circulation was originally proposed in 1991 by Vallance and Moncada.
[22] This hypothesis has since been confirmed by several studies that 
demonstrated NO as the main mediator of vascular abnormalities in 
PH.[9,23] In previous investigations, our research group found increased 
expression of two NOS isoforms predominantly involved in the ac-
tivation of NO synthesis (eNOS and iNOS), using an animal model 
of PH.[10,24] An increase in eNOS expression is already detectable in 

the early stages of PH induced by carbon tetrachloride (CCl4),[25] and 
eNOS appears to be the major enzymatic pathway for NO synthesis.[26] 
Agonists in the eNOS activation pathway include shear stress, VEGF, 
and HSP90, among others. Furthermore, inflammatory cytokines such 
as TNF-α appear to influence NO production by eNOS.[9]

Figure 4. Western blot for NQO1. Effects of PPVL and NAC administra-
tion on NQO1, quantified by the Western blot technique.
*: P<0.05; **: P<0.05 (n=6).

W
es

te
rn

 b
lo

t f
or

 N
Q

O
1 

(a
.µ

)

SO PPVL+NCAPPVL

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 5. Immunohistochemical staining for NF-κB. Effects of PPVL and 
NAC administration on NF-κB expression. (a) SO group, (b) PPVL group, 
and (c) PPVL + NAC group.
*: P<0.001 (n=6).
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Figure 6. Immunohistochemical staining for TNF-α. Effects of PPVL and 
NAC administration on TNF-α expression. (a) SO group, (b) PPVL group, 
and (c) PPVL + NAC group.
*: P<0.001 (n=6).
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Another modulator of NO upregulation is VEGF, which is activated by 
increased portal pressure. Through its angiogenic activity, VEGF ulti-
mately contributes to increased blood flow in the splanchnic territory 
and to local vasodilation.[27] In the present study, animals subjected to 
the same experimental model had increased expression of HSP90 when 
compared with controls (Fig. 1), which demonstrates the influence of 
this chaperone in the eNOS activation pathway and confirms previous 
results published by Ai et al.,[28] in which HSP90 was overexpressed in 
the endothelium of mesenteric vessels in PPVL animals.
HSP90 in PH exerts an agonist effect on NO production and vasodi-
lation via eNOS.[29] NAC was able to reduce the expression of HSP90 
in the model tested herein. Therefore, the chosen treatment appears to 
fully modulate the studied pathway, reducing the levels not only of 
VEGF but also of HSP90, thereby contributing to a reduction in va-
sodilation mediated by eNOS (Fig. 1).
In PH, iNOS is also upregulated. The inducible form of NOS is acti-
vated during disease progression and may even be regulated by NF-κB. 
Stimulation of iNOS expression occurs along with the activation of the 
innate and adaptive immune systems, infiltration by polymorphonu-
clear leukocytes, and recruitment of lymphocytes. The latter produce 
large amounts of NO and cytokines that modulate the inflammatory 
process, such as TNF-α.[8] Our results showed higher expression of 
iNOS in PPVL animals (Fig. 2). This enzyme is overexpressed in the 
gastric mucosa of animals with PHG. Our results suggest that gastric 
inflammation is clearly established in this experimental model, which 
is consistent with the literature.[24]

NAC has modulatory activity at different stages of the inflammatory and 
phagocytic process, stimulating immune functions and reducing levels of 
proinflammatory cytokines. Furthermore, it inhibits the production of NO 
via iNOS.[30] In this study, animals treated with NAC exhibited reductions 
in iNOS expression in the stomach and, therefore, an attenuation of gastric 
inflammation (Fig. 2). The same phenomenon was reported in a previous 
study using an animal model of PH induced by dimethylnitrosamines.[31]

This finding was reaffirmed in our analysis of NF-κB and TNF-α im-
munoreactivity in gastric tissue: both were significantly increased in 
PPVL animals as compared with controls (Figs. 5, 6). NF-κB is cur-
rently considered a typical proinflammatory signaling molecule, due 
to its action on the expression of proinflammatory genes, chemokines, 
cytokines, and adhesion molecules.[32] In the cytoplasm, this factor is 
bound to its inhibitory protein, IκB; only after phosphorylation and 
degradation by specific protein kinases, such as the IκB kinase com-
plex, does translocation of NF-κB to the nucleus become possible.[33] 
The stimulus for NF-κB translocation occurs via neurotransmitters such 
as glutamate, viral and bacterial products, reaction products (via iNOS), 
increased intracellular calcium levels, and oxidative stress.[34]

TNF-α, in turn, is a cytokine with an important role in the activation of 
NF-κB. It participates in a wide spectrum of biological activities, includ-
ing inflammation, apoptosis, and cell growth and differentiation. By ex-
tracellular stimuli, TNF causes phosphorylation of IκB and subsequent 
release of NF-κB, which can then act on target genes in the cell nucleus.[34]

In the literature, the anti-inflammatory properties of NAC have been 
associated with its ability to modulate the immune response and its 
actions on leukotriene and prostaglandin metabolism, among other 
mechanisms.[35] All of these effects are related to the nature of NAC 
as a donor source of –SH groups, inducing the synthesis of glutathione 
(GSH), which increases cellular protection against oxidative stress 
and inflammatory processes. NAC also acts to reduce reactive oxygen 
species produced by leukocytes.[36]

NAC inhibits the activation of NF-κB and also blocks TNF-α by reduc-
ing its affinity for the TNF receptor.[37] It is well known that not only the 
inflammatory process but also oxidative stress is an aggravating factor 
in chronic liver disease.[30] Prolonged NO synthesis at high levels may 
induce oxidative stress due to the production of peroxynitrite (ONOO–), 
a powerful oxidant. This compound, generated by the NO and perox-
ynitrite reaction, can cause oxidative and nitrosative damage to proteins, 
lipids, and DNA.[38] The presence of a high concentration of peroxynitrite 
in the gastric mucosa of animals subjected to the PPVL model of PH was 
previously demonstrated by immunohistochemistry.[11] Yet, in the same 
experimental model, an increase in the thiobarbituric acid reactive sub-
stances and NO levels and a reduction in the activity of the antioxidant 
enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) 
have been demonstrated, results that suggest increased oxidative stress.[39]

In the present study, we evaluated the possibility that NAC would act 
synergistically as a dual antioxidant and anti-inflammatory. To deter-
mine its antioxidant role, we used the Western blot technique to assess 
the expression of SOD and NADPH quinone oxidoreductase-1 (NQO1). 
SOD is an antioxidant enzyme responsible for catalyzing the dismuta-
tion of superoxide (O2

–º) into hydrogen peroxide (H2O2). Increased lev-
els of this enzyme are indicative of increased O2

–º production and hence 
of oxidative stress.[30,40] In the present study, expression of this enzyme 
was significantly increased in PPVL animals as compared with controls, 
and NAC was able to reduce such overexpression (Fig. 3). The reactive 
oxygen species can be removed from tissue by endogenous antioxidants 
such as thiols, components which are found, e.g., in GSH.[41] As a pre-
cursor of this molecule, NAC acts as an antioxidant and can thus be ben-
eficial in disorders aggravated by oxidative stress. In this study, NAC 
had a clear antioxidant effect, as demonstrated in the analysis of SOD 
expression (Fig. 3) in the PPVL + NAC group. Levels of this enzyme 
returned to near-control values, demonstrating a reduction in oxidative 
stress and, consequently, in the expression of the SOD enzyme.
Another antioxidant molecule, which is less effective than SOD but acts 
as a direct scavenger of the superoxide anion, is NQO1.[39] The NQO1 
gene encodes enzymes responsible for cell protection, which catalyze 
the reduction of electrons and prevent the formation of reactive oxygen 
species.[42] Increased expression of NQO1 was demonstrated in PPVL 
animals (Fig. 4) when compared with controls. This finding is probably 
related to the cellular response to oxidative stress caused by inflamma-
tion,[42] and NAC showed a synergistic antioxidant and anti-inflamma-
tory activity in reducing expression of this marker in the gastric mucosa 
of PPVL + NAC animals (Fig. 4).
From the findings of this study, we conclude that the experimental model of 
PPVL successfully induces PH with subsequent inflammation and oxida-
tive stress in the gastric mucosa. Furthermore, we suggest that a synergistic 
antioxidant and anti-inflammatory effect of NAC was able to attenuate the 
damage caused by these processes, contributing to the integrity of gastric 
tissue and mitigating the injuries caused by this experimental model.
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