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Metabolic-associated fatty liver disease (MAFLD) is a public health prob-
lem that is increasingly recognized, currently affecting up to a quarter of 
the world’s adult population. Although a biopsy is the current gold standard 
to diagnose MAFLD, there are potentially serious complications, making 
it inadequate. Thus far, noninvasive methods have not been able to deter-
mine the stage and the subtype of MAFLD. The development and progno-
sis of MAFLD are modulated by epigenetic factors, including microRNAs 
(miRNAs), which may be potential biomarkers for MAFLD. Polyphenols, 
found in many fruits and vegetables, may be useful, as they alter gene ex-
pression with epigenetic factors, such as miRNAs. This review presents an 
overview of the relationship between polyphenols and miRNAs in MAFLD. 
The literature suggests that miRNAs could be used as a diagnostic method 
for MAFLD, especially miRNA-122 and miRNA-34a. However, though 
it has been demonstrated that polyphenols may contribute to improving 
MAFLD, to our knowledge, no study to date has shown the relationship 
between polyphenols and miRNAs in MAFLD. The exact mechanisms of 
polyphenols on miRNAs in MAFLD remain unclear. Future studies may pro-
vide hope for diet therapy for MAFLD patients as well as the development 
of polyphenol-related foods or drugs that target miRNAs to treat MAFLD.

Keywords: Metabolic-associated fatty liver disease; microRNA; poly-
phenols.

MAFLD is a multisystem disorder with a complex pathophysiology.[1] 
It is recognized as the liver disease component of metabolic syndrome, 
and is associated with insulin resistance and genetic susceptibility. As 
the epidemic rates of obesity, type II diabetes mellitus, insulin resis-
tance, and dyslipidemia continue to increase, the risk of MAFLD in-
creases proportionately.[2,4]

In recent years, it has been demonstrated that epigenetic factors 
may cause the development of a wide range of diseases, including 
MAFLD, and miRNAs appear to have an important role.[5] Therefore, 
miRNAs have the potential for use in various clinical settings, such 
as early diagnosis and the monitoring of progression and response to 
treatment in various diseases.[6] Almost all genetic pathways, includ-
ing transcription factors, secreted factors, receptors, and transporters, 
can be modulated by miRNAs.[7] Also, environmental conditions, 
such as stress and nutritional status, can modulate epigenetic factors, 
and so miRNAs may also be useful to assess the effects of diet and 
other lifestyle interventions.[8]

The value of polyphenols in functional foods is evident due to bio-
logical activity that includes antioxidant, anti-inflammatory, and an-
ticancer behavior; regulation of lipid, carbohydrate, and amino acid 
metabolism; inhibition of platelet aggregation; and improvement of 
endothelial function.[9,10] Regular consumption of polyphenols has 
been associated with a reduction in the risk of several metabolic dis-
eases, such as obesity, insulin resistance, hypertension, and cardio-
vascular disease.[11-13] Polyphenols may alter gene expression via epi-
genetic factors, such as miRNAs, by contributing to the modulation 
of key proteins.[14,15] Thus, they may contribute to the amelioration 
of MAFLD and other diseases, but the knowledge of the potential 
mechanisms of polyphenols and miRNAs in MAFLD remains lim-
ited. This review presents an overview of the known relationship be-
tween polyphenols and miRNAs in MAFLD.

Materials and Methods
A comprehensive electronic search of the Scopus, ScienceDirect, 
and PubMed databases was conducted to identify relevant studies. 
The keywords used were “phenolic” OR “polyphenol” AND “non-
alcoholic fatty liver disease” OR “metabolic dysfunction-associated 
fatty liver disease” AND “miRNA” OR “microRNAs”. Theses, edi-
torials, letters to editor, and conference abstracts were excluded. The 
inclusion criteria were in vitro, in vivo, or human clinical studies 
of the effects of polyphenols on MAFLD-associated miRNAs. We 
did not find any human clinical studies. A total of 85 studies were 
included in this review.

Introduction
Metabolic (dysfunction)-associated fatty liver disease (MAFLD), pre-
viously known as non-alcoholic fatty liver disease (NAFLD), is the 
most common chronic liver disorder worldwide, thought to affect more 
than one-third of the general population (estimated to be 30% of adults 
in industrialized countries).[1,2] The high prevalence of MAFLD has 
been associated with increasing levels of an unhealthy diet and low 
physical activity seen worldwide.[3]
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The Role and Expression Level of miRNAs in MAFLD
miRNAs are endogenous, small non-coding RNAs that play a central 
role in regulating both mRNAs and the protein expression of target 
genes.[16] miRNAs are specific regulators that affect the stability or 
translation of the targeted mRNA. miRNAs are abundant in the liver 
and modulate a spectrum of cellular processes related to inflammation, 
proliferation, differentiation, cellular growth, tissue remodeling.[17,18] 
Therefore, since miRNAs can be detected in tissue and serum in a sta-
ble form, they are potential biomarkers for many liver diseases.[19]

Thousands of miRNAs have been identified, though their exact mech-
anisms remain unknown. Several miRNAs have shown anomalous 
expression in MAFLD (Fig. 1). One study identified 44 miRNAs with 
differential expression in MAFLD patients.[20] It has been reported that 
the serum level of miRNA-122, miRNA-34a, and miRNA-16 were 
upregulated in MAFLD patients compared with control groups, and 
that the level of miRNA-122 and miRNA-34a was correlated with the 
severity of MAFLD.[21] It was observed in another study that the serum 
level of miRNA-21, miRNA-34a, miRNA-122, and miRNA-451 were 
upregulated in MAFLD patients and that the serum level of miRNA-122 
was positively associated with steatosis severity.[22] It has also been re-
ported that hsa-miRNA-122-5p, hsa-miRNA-1290, hsa-miRNA-27b-
3p, and hsa-miRNA-192-5p levels were higher in MAFLD patients 
and that miRNA levels were a more specific biomarker for MAFLD 
than alanine transaminase and fibrosis-4 index values.[23] An inves-
tigation of the serum level of miRNA-197, miRNA-146b, miRNA-
10b, miRNA-181d, miRNA-34a, miRNA-122, miRNA-99a, and 
miRNA-29a in MAFLD patients yielded results indicating that the 
level of miRNA-181d, miRNA-99a, miRNA-197, and miRNA-146b 
were downregulated in MAFLD patients. Additionally, miRNA-197 
and miRNA-10b were associated with the severity of inflammation 
while miRNA-181d and miRNA-99a levels were related to the serum 
level of gamma-glutamyltransferase in non-alcoholic steatohepatitis 
(NASH) patients.[24] It has also been noted that the serum level of 
miRNA-122 in mild steatosis patients was lower than that of severe 
steatosis patients, while the serum level of miRNA-122 in mild fibro-
sis patients was higher compared with that of severe fibrosis patients.
[25] A study that analyzed 84 miRNAs in MAFLD patients showed 
that the serum level of miRNA-122, miRNA-192, miRNA-375, and 
miRNA-122 were upregulated in steatosis patients, and the serum level 
of miRNA-122 and miRNA-192 were significantly downregulated in 
NASH patients compared with the level observed in controls.[6] It was 
confirmed that the serum level of miRNA-21 was lower in NASH 
patients and that the serum level of miRNA-122 and miRNA-192 
was differentially regulated in bland steatosis (NAFL) and NASH 
patients.[26] Similarly, the serum level of miRNA-21 was found to 
be lower in MAFLD patients.[27] It has been observed that the level 
of miRNA-122, miRNA-192, and miRNA-34a was associated with 
steatosis and inflammatory activity, and that only the miRNA-16 level 
was significantly correlated with fibrosis. It has also been reported that 
the serum level of miRNA-34a was lower in NASH patients than in 
MAFLD patients.[28] Furthermore, it was indicated that the serum level 
of miRNA-122 and miRNA-34a was higher, while the miRNA-331-
3p and miRNA-30c levels were lower in MAFLD patients.[29] Another 
study found that the serum level of miRNA-122 and miRNA-34a 
was upregulated in MAFLD patients and strongly related with very-
low-density lipoprotein and triglyceride (TG) levels.[30] The findings 
of other research confirmed that the serum level of miRNA-122 was 
upregulated in MAFLD patients.[31] It has also been reported that the 

expression of miRNA-122 was reduced in a morbidly obese group 
compared with moderately obese patients and that the miRNA-122 
level was greater in morbid obese patients with NASH than in morbid 
obese patients with simple steatosis. The expression of miRNA-33b 
was greater in the NASH patients.[32] The findings of another study 
revealed that the serum level of miRNA-301 and miRNA-34a-5p were 
upregulated and miRNA-375 was downregulated in MAFLD patients. 
In addition, increased expression of miRNA-301a and miRNA-375 
was noted in hepatocellular carcinoma patients.[33] Other researchers 
found that 14 miRNAs were associated with MAFLD and that the 
liver levels of miRNA-139-5p, miRNA-30b-5p, miRNA-122-5p, 
and miRNA-422a were lower and the level of miRNA-146b-5p was 
higher in obese patients with MAFLD compared with a control group.
[34] It has also been demonstrated that miRNA-22,miRNA-29a, and 
miRNA-663a were upregulated in MAFLD patients.[35] Similarly, 
another study noted that miRNA-34a, miRNA-192, miRNA-27b, 
miRNA-122, miRNA-22, miRNA-21, miRNA-197, miRNA-30c, and 
miRNA-16 were correlated with MAFLD severity.[36] Table 1 provides 
details of studies about miRNA levels and Table 2 summarizes some 
possible miRNA pathways in MAFLD patients.

The Relationship between Polyphenols and miRNAs
Polyphenols are secondary metabolites that are abundant in fruits 
and vegetables as well as other products, including coffee, tea, red 
wine, and dark chocolate.[14,37,38] Polyphenols are classified into 2 
main groups: flavonoids and non-flavonoids. The non-flavonoids in-
clude subgroups of phenolic acids, stilbenes, and lignans. The main 
subgroups of flavonoids are flavanols, flavan-3-ols, isoflavones, and 
anthocyanidins, and minor flavonoid subgroups include flavan-3,4-
diols, dihydroflavonols, chalcones, dihydrochalcones, coumarins, 
and aurones.[37] A dietary intake of polyphenols was estimated at 
1-1.2 g per day, 40% of which were flavonoids.[9] Only 5% to 10% of 
polyphenols ingested are absorbed in the small intestine. During the 
process of absorption, polyphenols are often conjugated in the small 
intestine and later in the liver. The non-absorbable portion passes to 
the colon and is metabolized by intestinal microbiota.[14]

Polyphenols have been shown to have various therapeutic properties, 
such as antioxidant, anti-inflammatory, antidiabetic, antiallergic, an-
timicrobial, and anticancer effects, as well as improved lipid metab-
olism.[39] Most of the therapeutic effects of polyphenols have been 
linked to altering gene expression that encodes essential metabolic 

Figure 1. The role of miRNAs in key transitions of the pathogenesis of 
non-alcoholic fatty liver disease.
MiRNA: MicroRNA.
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proteins. These gene modifications may result from the interaction of 
polyphenols with epigenetic factors, such as signal cascades and/or 
miRNAs.[18] Modulation of miRNAs by polyphenols appears to be a 
potential new strategy to regulate metabolism and related diseases;[40] 
however, the precise mechanisms are not yet known.[9,14] In recent 
years, the beneficial effects of polyphenols in MAFLD patients have 
begun to attract attention and it has been demonstrated that the ther-

apeutic effects of polyphenols may contribute to improvement of 
MAFLD.[41] Investigation of miRNA pathways continues.

Our review revealed no study evaluating the relationship between 
polyphenols and miRNAs in MAFLD. Therefore, we focused on the 
relationship between polyphenols and miRNAs that may have an im-
pact on liver disease and diseases caused by MAFLD (Fig. 2).

Table 2. Possible microRNA pathways in metabolic-associated fatty liver disease

miRNA	 Pathway

miRNA-122[61-64]	 Lipid metabolism (cholesterol, VLDL, TG, HMGCR), carcinogenesis

miRNA -10b[65] 	 Lipid metabolism (PPAR-α)

miRNA -33[66-68]	 ABCA1 transport, ABCG1, Niemann Pick (NP) -C1, insulin signal pathway

miRNA -34[6,21,61,69-71]	 AMPK phosphorylation, miR-34a/SIRT1/p53 activation, MAFLD progression, lipid metabolism

miRNA -192[72,73]	 MAFLD progression

miRNA -214-5p[74]	 MAFLD progression

miRNA -27a/b[75]	 Lipid metabolism

miRNA -24[76]	 Lipid metabolism (Insig1)

miRNA -451[77]	 Inflammation

miRNA -1290, miRNA -27b-3p[78]	 Variable

miRNA -192-5p[79]	 Lipid metabolism (SCD-1)

miRNA -103/107[8,80,81]	 PANK1-3, lipid metabolism, development of insulin resistance, PPAR-α, caveolin-1

miRNA -155[82,83]	 Inflammation and liver injury, SREBP-lc, LXRα - lipid metabolism

miRNA -29[61]	 SIRT1, HMGCR, LPL

miRNA -467b[84]	 LDL metabolism

miRNA -143[85]	 FABP4, SLC2A4, PPARγ, and LIPE

ABCA1: member 1 of human transporter sub-family ABCA; ABCG1: Adenosine 5’-triphosphate-binding cassette subfamily G member 1; AMPK: Adenosine 
monophosphate-activated protein kinase; FABP4: Fatty acid-binding protein 4; HDL: High-density lipoprotein; HMGCR: 3-hydroxy-3-methyl-glutarylcoenzyme A 
reductase; LDL: Low-density lipoprotein; LIPE: Hormone-sensitive lipase; LPL: Lipoprotein lipase; LXRα: Liver X receptor R-alpha; MAFLD: Metabolic-associated fatty 
liver disease; MiRNA: MicroRNA; NP-C1: Niemann Pick-C1; PANK1-3: Pantothenate kinase 1-3; PPAR-α: Peroxisome proliferator-activated receptor-alpha; PPARγ: 
Peroxisome proliferator-activated receptor γ; SCD-1: Stearoyl-CoA desaturase 1; SIRT-1: Sirtuin-1; SLC2A4: Solute carrier family 2, facilitated glucose transporter 
member 4; SREBP-lc: Sterol regulatory element-binding transcription factor 1; TG: Triglycerides; VLDL: Very-low-density lipoprotein.

Figure 2. Possible effects of polyphenols on MAFLD-associated miRNAs.
MAFLD: Metabolic-associated fatty liver disease; MiRNA: MicroRNA.
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i. In Vitro Studies
Polyphenols have been shown to improve lipid metabolism, inhibit adi-
pogenesis and inflammation, and also provide antioxidant effects in cell 
line studies. Therefore, it is thought that the miRNAs in polyphenols 
may contribute to the amelioration of MAFLD patients.
A study reported that the miRNA-122 and miRNA-33 levels in hepatic 
cells decreased following 5 hours of a 25 mg/L grape proanthocyanin 
treatment in mouse hepatoma cell lines.[42] Ellagitannin doses of 3.125 
μg/mL, 6.25 μg/mL, 12.5 μg/mL, 25 μg/mL, and 50 μg/mL for 72 hours 
in human HepG2 cells demonstrated an antiproliferative effect; hsa-let-
7e, hsa-miR-370, hsa-mir-373, and hsa -miR-526b were upregulated, 
whereas hsa-let-7a, hsa-let-7c, and hsa-let-7d were downregulated, de-
pending on the dose and time.[43] In another study, HepG2 cells were 
treated with 50 mg/L of pure epigallocatechin gallate isolated from 
green tea (EGCG), 100 mg/L of grape seed proanthocyanin extract 
(GSPE) or 100 mg/L of cocoa proanthocyanidin extract (CPE). After 
5 hours of treatment, miRNA-30b was downregulated by all 3 treat-
ments, and EGCG or CPE treatments upregulated the level of miRNA-
1224-3p, miRNA-197, and miRNA-532-3p.[15] In another study, the 
administration of 0.1 μg/mL, 0.2 μg/mL, 2 μg/mL, and 20 μg/mL of 
EGCG to HepG2 cells revealed that miRNA-221, miRNA-181a, and 
miRNA-10b were upregulated in a dose-dependent manner, indicating 
that EGCG inhibited osteopontin-dependent injury and fibrosis. [44]

It has been established that obesity and dyslipidemia negatively affect 
the development of MAFLD.[4] Studies have shown that the treatment of 
preadipocyte cells with polyphenols improved miRNA levels. For ex-
ample, administration of 25 μM of trans-resveratrol, trans-resveratrol-3-
O-sulfate, trans-resveratrol-3’-O-glucuronide (3G) or trans-resveratrol-
4’-O-glucuronide (4G) treatment in 3T3-L1 to maturing pre-adipocytes 
during differentiation for 8 days resulted in 3G and 4G inhibition in 
adipogenesis through upregulation of miRNA-155.[45] Other research 
confirmed that miRNA-17-5p was upregulated in 3T3-L1 matured pre-
adipocyte cells following 25 µM curcumin treatment. Additionally, 
miRNA-17-5p was found to target levels of the tcf7L2 gene, reduc-
ing the risk of diabetes, and had an inhibiting effect on adipogenesis.
[46] Human pre-adipocyte cells treated with 25 µmol/L of extra-virgin 
olive oil polyphenols for 6 hours resulted in upregulation of intracel-
lular let-7c levels and downregulation in miRNA-155 and miRNA-34a 
levels, which were inversely correlated with the degree of inflamma-
tion. Accordingly, the levels of miRNA-155-5p, miRNA-34a-5p, and 
let-7c-5p, associated with the nuclear factor kappa β (NF-κB) pathway, 
were inversely modulated by tumor necrosis factor alpha (TNF-α) in 
both cells and exosomes. It was suggested that these interactions could 
have a significant effect on reducing obesity-related inflammation.[47]

ii. In Vivo Studies
The development of MAFLD is characterized by a degenerative an-
tioxidant balance and progressive inflammation, and the accumulation 
of fatty acids in the liver. MAFLD increases with obesity, which is of-
ten associated with comorbid metabolic diseases. The prevalence of 
MAFLD is approximately 65% in obese patients and may be as high 
as 85% in the morbidly obese.[48] To our knowledge, there have been no 
in vivo studies that have investigated the relationship between polyphe-
nols and miRNAs in MAFLD.We examined the relationship between 
polyphenols and miRNAs in obese mice or rat models fed with a high-
fat diet due to the significant correlation between obesity and MAFLD.
A study demonstrated that miRNA-122 and miRNA-125b in female 

mice were upregulated with 2 mg/g quercetin treatment for 6 weeks 
compared with 0.2 mg/g quercetin treatment.[49] In other research, mice 
were fed a control diet, a high-fat diet, or a high-fat diet treated with 
0.5% to 1.0% coffee polyphenols (CPP) for 2-15 weeks and increased 
miRNA-122 levels were seen. Additionally, the mRNA level of sterol 
regulatory element-binding protein (SREBP)-1c, acetyl-CoA carboxy-
lase-1 and -2, stearoyl-CoA desaturase-1, and pyruvate dehydrogenase 
kinase-4 in the liver were significantly lower in mice fed with CPP.[50] In 
another study, mice were fed a control or a high-fat diet and treated with 
a high dose of quercetin for 10 weeks. The flavonoid treatment resulted 
in regulated expression of miRNA-103, miRNA-107, and miRNA-122. 
The study suggested that polyphenols may be able to prevent or weaken 
the metabolic effects of a high-fat and high-cholesterol diet when ad-
ministered in a continuous dose, indicating the importance of dietary 
intervention in the treatment of MAFLD.[51]

In other research, rats were fed a lard oil diet or lard oil with 250 mg/kg of 
GSPE for 3 weeks and downregulation of miRNA-122 and miRNA-33 
was observed. These results suggested that proanthocyanidin treat-
ment increased hepatic cholesterol efflux to produce new high-density 
lipoprotein (HDL) particles by inhibiting miRNA-33, and decreased 
lipogenesis by inhibiting miRNA-122.[42] Another study reported that 
500 mg/kg of green tea treatment for 12 weeks led to upregulation of 
miRNA-335 in adipose tissue in mice fed a high-fat diet. Consequently, 
miRNA-335 downregulated genes involved in insulin signaling and 
lipid metabolism. On the other hand, green tea inhibited TNF-α lev-
els.[52] In addition, the upregulation of miR-221 was observed after 16 
weeks with green tea treatment (20 mg/kg) treatment in rats with thioac-
etamide (TAA)-induced hepatic fibrosis. Treatment with EGCG blocked 
the effects of TAA and inhibited osteopontin-dependent injury and fibro-
sis.[44] According to another study, upregulated miRNA-17-5p inhibited 
adipogenesis and decreased diabetes risk by suppressing the Wnt signal 
pathway effector Tcf7l2 gene in mice fed a high-fat diet or high-fat diet 
with curcumin (2 μM dose for 6 days and 10 μM on day 7).[46]

It has also been observed that treatment with 30 mg/kg of resveratrol for 
8 weeks resulted in decreased fatty acid synthase and SREBP1 protein 
levels and increased carnitine palmitoyltransferase-1a levels in obese 
rats. Fatty acid synthase was reduced after miRNA-122-5p transfection; 
miRNA-122-5p transfection; carnitine palmitoyl transferase-1a was 
downregulated by the over-expression of miRNA-107-3p. The study 
showed that SREBF1 is a target gene for miRNA-103-3p and miRNA-
107-3p, FASN is a target for miRNA-122-5p, and CPT1A is a target for 
miRNA-107-3p.[53] It has also been noted that in mice or apoE–/– mice fed 
with 0.006% quercetin, hesperidin, naringenin, anthocyanin, catechin, 
curcumin, proanthocyanin, caffeic acid, or ferulic acid or a control diet, 
mmu-miRNA-291b-5p and mmu-miRNA-296-5p were upregulated, 
while mmu-miRNA-30c-1, mmu-miRNA-467b and mmu-miRNA-374 
were downregulated after 8 weeks.[54] The effects of polyphenols on 
miRNAs as reported in various studies are provided in Table 3.

Discussion
The precise prevalence of MAFLD is not known, but it is increasing 
rapidly alongside diseases such as diabetes, dyslipidemia, and partic-
ularly obesity. The prevalence among obese individuals has been esti-
mated at 65%, and it can be as much as 85% in the morbidly obese.[48] 
Today, obesity is a pandemic; worldwide, more than 1.9 billion adults are 
overweight and 600 billion adults are obese.[55] Obesity plays a key role 
in the development of MAFLD, as well as genetic predisposition and 
environmental factors, such as dietary habits.[56] Several invasive and 
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noninvasive methods are used in the diagnosis of MAFLD. Although 
a biopsy, an invasive method, is the current gold standard, it has many 
disadvantages due to the potential for serious complications, such as 
severe pain, bleeding, infection, and even death, and it can therefore be 
difficult to apply in the clinic.[57,58] Noninvasive methods, such as liver 
enzyme tests, ultrasound, and other imaging methods are widely used, 
but these are not sufficient to define the stage and subtype of MAFLD.
[57] There is a growing need to identify new and reliable biomarkers.
miRNAs are stable and can be detected in plasma, serum, and other 
biological fluids.[19] Several studies have shown that miRNAs may rep-
resent a useful tool to diagnose the stage and the subtype of MAFLD.
[8,20-35] Research has demonstrated that the serum level of miRNA-122 is 
particularly high in MAFLD patients.[6,21-25,28,35,59] Additionally, miRNA-
34a is upregulated in patients with NASH and can serve as a reliable 
biomarker to distinguish between MAFLD and NASH.[20,21,27-29] The 
miRNA pathways thought to have a relationship in the diagnosis and 
prognosis of MAFLD are shown in Table 2, but further studies are 
needed to confirm the pathways and whether miRNAs can be used ac-
curately in the diagnosis of MAFLD.
As yet, there is no pharmacological treatment for MAFLD; only life-
style modification with diet therapy and physical activity is recom-
mended.[60] Fruits and vegetables are the basis of a healthy diet, and are 
also rich in polyphenols.[37] A link has been established that polyphenols 
positively affect health through action to alter gene expression encod-
ing essential metabolic proteins. These gene modifications may be the 
result of the interaction of polyphenols with epigenetic factors, such as 
signal cascades and/or miRNAs,[18] but the exact mechanisms are still 
unknown.[9,14] It has been demonstrated that polyphenols can contribute 
to improving MAFLD, but, to our knowledge, no study has yet shown 
the relationship between polyphenols and miRNAs in MAFLD. Studies 
of obese, high-fat diet-fed mice and rats, and in vitro studies linked 
to liver and pre-adipocyte cell lines have shown that polyphenols can 
modulate the miRNA profiles in liver disease, particularly MAFLD, but 
the studies and polyphenol groups examined are limited.[13,41-53] More-
over, there has been no clinical study to date. In vitro, in vivo, and clin-
ical studies are urgently needed to further demonstrate and explain the 
relationship between polyphenols and miRNAs for MAFLD patients.

Conclusion
It is fairly certain that miRNAs can have a role in the diagnosis and 
prognosis of MAFLD and could provide an easy and practical nonin-
vasive method for the diagnosis of MAFLD. Polyphenols have been 
shown to contribute to the amelioration of MAFLD, as in many dis-
eases, and may modulate miRNAs in MAFLD due to their antioxi-
dant, anti-inflammatory, antidiabetic, anticancer properties, as well as 
improve lipid metabolism, it is not yet possible to determine the exact 
effects of polyphenols on miRNAs in MAFLD. Future studies may 
be a source of hope for diet therapy recommendations for MAFLD 
patients and the development of polyphenol-related foods or drugs 
that target miRNAs.
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